• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于广义粒子动力学的巷道围岩弹塑性分析

赵毅, 周小平, 钱七虎

赵毅, 周小平, 钱七虎. 基于广义粒子动力学的巷道围岩弹塑性分析[J]. 岩土工程学报, 2016, 38(6): 1104-1116. DOI: 10.11779/CJGE201606018
引用本文: 赵毅, 周小平, 钱七虎. 基于广义粒子动力学的巷道围岩弹塑性分析[J]. 岩土工程学报, 2016, 38(6): 1104-1116. DOI: 10.11779/CJGE201606018
ZHAO Yi, ZHOU Xiao-ping, QIAN Qi-hu. Elastoplastic analysis of surrounding rock masses around tunnels using general particle dynamics method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1104-1116. DOI: 10.11779/CJGE201606018
Citation: ZHAO Yi, ZHOU Xiao-ping, QIAN Qi-hu. Elastoplastic analysis of surrounding rock masses around tunnels using general particle dynamics method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1104-1116. DOI: 10.11779/CJGE201606018

基于广义粒子动力学的巷道围岩弹塑性分析  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目(2014CB046903); 国家自然科学基金项目(51325903,51279218); 重庆市自然科学基金院士专项项目(cstc2013jcyjys30002)
详细信息
    作者简介:

    赵 毅(1983- ),男,博士研究生,主要从事岩土工程的科研工作。E-mail: zhaoyi0622@163.com。

Elastoplastic analysis of surrounding rock masses around tunnels using general particle dynamics method

  • 摘要: 提出了广义粒子动力学数值分析方法,该方法是一种无网格数值分析方法,可以考虑关联塑性流动法则和非关联塑性流动法则对岩石材料塑性变形的影响。将广义粒子动力学数值分析方法应用于巷道围岩的弹塑性分析,确定了巷道围岩的应力场、位移场和塑性区。该数值模拟结果与有限元结果吻合较好,表明将考虑岩石材料剪胀特性的弹塑性本构理论引入到广义粒子动力学数值分析方法,不失为模拟岩石类材料弹塑性破坏的一种有效数值手段,研究结果为更好地理解岩石材料的屈服破坏过程提供重要的参考。
    Abstract: The novel meshless numerical method, which is known as general particle dynamics (GPD) method, is proposed. The non-associated flow law and the associated flow law can be employed to analyze the plastic deformation of the surrounding rock masses around tunnels using the GPD method. The stability of the surrounding rock masses around tunnels are also determined using the GPD method as well as the stress fields, displacement fields and plastic zone. The numerical results by the proposed method are in good agreement with the FEM results. It is proved that the GPD method is efficient to predict the elastic-plastic properties of the surrounding rock masses around tunnels.
  • [1] 潘 岳, 王志强. 基于应变非线性软化的圆形硐室围岩弹塑性分析[J]. 岩石力学与工程学报, 2005, 24(6): 915-920. (PAN Yue, WANG Zhi-qiang. Elastoplastic analysis of surrounding rock of circular chamber based on strain nonlinear softening[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6): 915-920. (in Chinese))
    [2] CARRANZA-TORRES C, FAIRHURST C. The elastoplastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6): 777-809.
    [3] WANG Y. Ground response of circular tunnel in poorly consolidated rock[J]. Journal of Geotechnical Engineering, 1996, 122(9): 703-708.
    [4] PARK K H, KIM Y J. Analytical solution for a circular opening in an elastic-brittle-plastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 616-622.
    [5] SHARAN S K. Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(6): 817-824.
    [6] SHARAN S K. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 40(1): 78-85.
    [7] 蒋斌松, 张 强, 贺永年, 等. 深部圆形巷道破裂围岩的弹塑性分析[J]. 岩石力学与工程学报, 2007, 26(5): 982-986. (JIANG Bin-song, ZHANG Qiang, HE Yong-nian, et al. Elastoplastic analysis of cracked surrounding rocks in deep circular openings[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 982-986. (in Chinese))
    [8] BROWN E T, BRAY J W, LADANYI B, et al. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, 1983, 109(1): 15-39.
    [9] WANG S L, YIN X T, TANG H, et al. A new approach for analyzing circular tunnel in strain-softening rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 170-178.
    [10] LEE Y K, PIETRUSZCZAK S. A new numerical procedure for elastoplastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Tunnelling and Underground Space Technology, 2008, 23(5): 588-599.
    [11] PARK K H, TONTAVANICH B, LEE J G. A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses[J]. Tunnelling and Underground Space Technology, 2008, 23(2): 151-159.
    [12] PREVOST J H, HUGHES T J R. Finite element solution of elastic-plastic boundary value problems[J]. Journal of Appied Mechanics, 1984, 48: 69-74.
    [13] ZHOU X P, BI J, QIAN Q H. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1097-1114.
    [14] ZHOU X P, ZHAO Y, QIAN Q H. A novel meshless numerical method for modeling progressive failure processes of slopes[J]. Engineering Geology, 2015, 192(18): 139-153.
    [15] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory an application to non-spherical stars[J]. Mon Not R Astron Soc, 1977, 181: 375-389.
    [16] MONAGHAN J J, LATTANZIO J C. A refined particle method for astrophysical problems[J]. Astron Astrophys, 1985, 149(1): 135-143.
    [17] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response[J]. J Comput Phys, 1993, 109(1): 67-75.
    [18] LIBERSKY L D, PETSCHEK A G. Smoothed particle hydrodynamics with strength of materials[J]. Advances in the Free Lagrange Method Lecture Notes in Physics, 1990, 395: 248-257.
    [19] MONAGHAN J J. Simulating free surface flows with SPH[J]. J Comput Phys, 1994, 110(2): 399-406.
    [20] YU M H, LI J C. Computatioal plastictiy: with emphasis on the application of the unified strength theory and associated flow rule[M]. Berlia: Springer, 2012.
    [21] VERMEER P A, DE B R. Non-associated plasticity for soils, concrete and rock[J]. Heron, 1984, 29(3): 1-65.
    [22] 范 文, 俞茂宏, 陈立伟. 考虑材料剪胀及软化的有压隧洞弹塑性分析的解析解[J]. 工程力学, 2004, 21(5): 16-24. (FAN Wen, YU Mao-hong, CHEN Li-wei. An analytic solution of elastoplastic pressure tunnel considering material softening and dilatancy[J]. Engineering Mechanics, 2004, 21(5): 16-24. (in Chinese))
    [23] 邓楚键, 郑颖人, 王 凯, 等. 有关岩土材料剪胀的讨论[J]. 岩土工程学报, 2009, 31(7): 1110-1114. (DENG Chu-jian, ZHENG Ying-ren, WANG Kai, et al. Some discussion on the dilatancy of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1110-1114. (in Chinese))
    [24] 张培文, 陈祖煜. 剪胀角对求解边坡稳定的安全系数的影响[J]. 岩土力学, 2004, 25(11): 1757-1760. (ZHANG Pei-wen, CHEN Zu-yu. Finite element method for solving safety factor of slope stability[J]. Rock and Soil Mechanics, 2004, 25(11): 1757-1760. (in Chinese))
    [25] MONAGHAN J J. On the problem of penetration in particle methods[J]. Journal of Computational Physics, 1989, 82: 1-15.
计量
  • 文章访问数:  534
  • HTML全文浏览量:  1
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-25
  • 发布日期:  2016-06-24

目录

    /

    返回文章
    返回