• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

阶梯方形基础板挠度和内力场的求解

黄模佳, 程华虎, 李爱民, 兰志文, 周斌喜

黄模佳, 程华虎, 李爱民, 兰志文, 周斌喜. 阶梯方形基础板挠度和内力场的求解[J]. 岩土工程学报, 2016, 38(5): 909-915. DOI: 10.11779/CJGE201605017
引用本文: 黄模佳, 程华虎, 李爱民, 兰志文, 周斌喜. 阶梯方形基础板挠度和内力场的求解[J]. 岩土工程学报, 2016, 38(5): 909-915. DOI: 10.11779/CJGE201605017
HUANG Mo-jia, CHENG Hua-hu, LI Ai-min, LAN Zhi-wen, ZHOU Bin-xi. Expressions for deflection and internal forces on ladder square foundation plate[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 909-915. DOI: 10.11779/CJGE201605017
Citation: HUANG Mo-jia, CHENG Hua-hu, LI Ai-min, LAN Zhi-wen, ZHOU Bin-xi. Expressions for deflection and internal forces on ladder square foundation plate[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 909-915. DOI: 10.11779/CJGE201605017

阶梯方形基础板挠度和内力场的求解  English Version

基金项目: 国家自然科学基金项目(51568046,11572147,51268043,11172122); 江西省赣鄱英才555工程项目
详细信息
    作者简介:

    黄模佳(1960- ),男,教授,博士,博士生导师,主要从事力学方面的研究工作。E-mail: chenghuahu775858@163.com。

    通讯作者:

    程华虎

  • 中图分类号: TU47

Expressions for deflection and internal forces on ladder square foundation plate

  • 摘要: 四边自由阶梯方形基础板挠度和内力场的求解极为复杂,它不仅涉及基础板四自由边界条件的难愈满足,更涉及阶梯过渡处位移连续性和光滑性的难愈处理。到目前为止,人们还未给出四边自由阶梯方形基础板在中心垂直荷载作用下挠度和内力场的表达式。本文将载荷与弯曲刚度相除,提出了载刚比的概念,巧妙地解决了基础板阶梯过渡处连续性和光滑性难愈处理的问题,然后将基础板的载刚比展开成双重余弦傅里叶级数,将挠度函数展开成带补充项的双重余弦傅里叶级数,在满足板控制方程和四自由边界的条件下,确定双重余弦傅里叶级数中的待定系数,获得阶梯方形基础板挠度和内力场的级数表达式,所得表达式得到有限元数值仿真结果的验证。文中提出的载刚比概念将为非等厚度基础板挠度和内力场的解析求解提供新思路。
    Abstract: It is very complicated to give the expressions for deflection and internal forces on ladder square foundation plates with four free boundaries because of difficulties in satifying four free boundaries, displacement continuity and smoothness at ladder transitions. Until now, the expressions of deflection and internal forces on ladder square foundation plates under vertical loads are not available. Herein, by dividing the load with bending stiffness, the concept of load stiffness ratio is put forward, and the problems of continuity and smoothness at ladder transitions are cleverly solved. By the Fourier expansions of load stiffness ratio and plate deflection, the Fourier coefficients of plate deflection of satisfying the plate differential equation and four free boundaries are determined. The expressions for deflection and internal forces on ladder square foundation plates are derived. The expressions are verified by FEM. The proposed concept of load stiffness ratio may provide a new method for solving the deflection and internal forces on ladder square foundation plates.
  • [1] 成祥生. 弹性地基上的自由边矩形板[J]. 应用数学和力学, 1992, 13(10): 345-354. (CHENG Xiang-sheng. A free rectangular plate on elastic foundation[J]. Applied Mathematics and Mechanics, 1992, 13(10): 345-354. (in Chinese) )
    [2] TIMOSHENKO S, WOINOWSKY-KRIEGER S. Theory of plates and shells[M]. New York: MCGRAW-Hill Book Company, 1959: 114-170.
    [3] WASHIZU K. Vibrational methods in elasticity y and Plasticity[M]. New York: Pergamon Press, 1982: 35-67.
    [4] LIU J J, FU B L. New approach for solving restricted torsion problem[J]. Chinese Journal of Mechanical Engineering, 1977, 10(3): 227-231.
    [5] ZHU Y B, FU B L. Further research on the bending of the cantilever plates under a concentrated load[J]. Advances in Applied Mathematics and Mechanics in China, 1991, 15(3): 253-265.
    [6] KEER L M, STAHL B. Eigenvalue problem of rectangular plates With mixed edge conditions[J]. Journal of Applied Mechanics, 1972, 39(6): 513-520.
    [7] LAURA P A A, DURAN R. A note on forced vibration of a clamped rectangular plate[J]. Journal of Sound and Vibration, 1985, 42(1): 129-135.
    [8] DUNALDSON B K A. New approach to the forced vibration of thin plates[J].Journal of Sound and Vibration, 1973, 30(4): 397-417.
    [9] 凌道盛, 陈云敏, 丁皓江. 任意基础板的有限元分析[J]. 岩土工程学报, 2000, 22(4): 450-455. (LING Dao-sheng, CHEN Yun-min, DING Hao-jiang. Finite element analysis of arbitrary plates on ground[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 450-455. (in Chinese))
    [10] 王春玲, 黄 义. 弹性半空间地基上四边自由矩形板的弯曲解析解[J]. 岩土工程学报, 2005, 27(12): 1402-1407. (WANG Chun-ling, HUANG Yi. Analytic solution of rectangular plates loaded with vertical force on an elastic half space[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1402-1407. (in Chinese))
    [11] 李 刚, 熊益农, 尚守平. 半解析数值法分析四边自由中厚板的受力特性[J]. 湖南大学学报(自然科学版), 2007, 34(6): 19-23. (LI Gang, XIONG Yi-nong, SHANG Shou-ping. Semi-analytical numerical method for analyzing strength characteristic of the four free edge moderate thick plate[J]. Journal of Hunan University (Natural Sciences), 2007, 34(6): 19-23. (in Chinese))
    [12] 钟 阳, 孙爱民, 周福霖, 等. 弹性地基上四边自由矩形薄板分析的有限积分变换法[J]. 岩土工程学报, 2006, 28(11): 2019-2022. (ZHONG Yang, SUN Ai-ming, ZHOU Fu-lin, et al. Analytic solution of rectangular plates loaded with vertical force on an elastic half space[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2019-2022. (in Chinese))
    [13] 倪光乐, 李成明, 苏克之. 弹性矩形板与弹性地基共同作用的简化计算法[J]. 岩石力学与工程学报, 2000, 19(5): 659-665. (NI Guang-le, LI Cheng-ming, SU Ke-zhi. Analytic solution of rectangular plates loaded with vertical force on an elastic half space[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5): 659-665. (in Chinese))
    [14] 王春玲, 黄 义. 弹性地基板的分析简化模型[J]. 岩土力学, 2008, 29(1): 52-57. (WANG Chun-ling, HUANG Yi. Refined model for analysis of plates on elastic foundations[J]. Rock and Soil Mechanics, 2008, 29(1): 52-57. (in Chinese))
    [15] 卜小明, 严宗达. 无拉力Winkler地基上自由边矩形薄板的弯曲[J]. 应用数学和力学, 1991, 12(6): 567-578. (BU Xiao-ming, YANG Zong-da. Bending problems of rectangular reissner plate with free edges laid on tensionless Winkler foundations[J]. Applied Mathematics and Mechanics, 1991, 12(6): 567-578. (in Chinese))
    [16] 叶开沉, 刘人怀, 李思来, 等. 在对称线布载荷作用下的园底扁薄球壳的非线性稳定问题[J]. 兰州大学学报, 1965, 2: 10-33. (YE Kai-chen, LIU Ren-huai, LIU Si-lai, et al. Nonlinear stabilities of thin circular shallow shells under actions of axisymmetrical uniformly distributed line loads[J]. Journal of Lanzhou University, 1965, 2: 10-33. (in Chinese))
    [17] 王燮山. 解阶梯式变厚度两对边简支的矩形弹性薄板弯曲问题的解析解[J]. 应用力学学报, 1995, 12(1): 126-131. (WANG Xie-shan. The analytical solutions of bending problem for stepped rectangular elastic thin plates with two opposite simple supported edges[J]. Chinese Journal of Applied Mechanics, 1995, 12(1): 126-131. (in Chinese))
    [18] 徐芝纶. 弹性力学(下册)[M]. 4版. 北京: 高等教育出版社, 2006: 1-17. (XU Zhi-lun. Elasticity (part ii)[M]. 4th ed. Beijing: Higher Education Press, 2006: 1-17. (in Chinese))
计量
  • 文章访问数:  384
  • HTML全文浏览量:  3
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-15
  • 发布日期:  2016-05-24

目录

    /

    返回文章
    返回