• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盾构隧道管片注浆幂律流型浆液渗透扩散模型

叶飞, 陈治, 贾涛, 毛燕飞, 毛家骅

叶飞, 陈治, 贾涛, 毛燕飞, 毛家骅. 盾构隧道管片注浆幂律流型浆液渗透扩散模型[J]. 岩土工程学报, 2016, 38(5): 890-897. DOI: 10.11779/CJGE201605014
引用本文: 叶飞, 陈治, 贾涛, 毛燕飞, 毛家骅. 盾构隧道管片注浆幂律流型浆液渗透扩散模型[J]. 岩土工程学报, 2016, 38(5): 890-897. DOI: 10.11779/CJGE201605014
YE Fei, CHEN Zhi, JIA Tao, MAO Yan-fei, MAO Jia-hua. Penetration diffusion model of exponential fluid for backfill grouting through segments of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 890-897. DOI: 10.11779/CJGE201605014
Citation: YE Fei, CHEN Zhi, JIA Tao, MAO Yan-fei, MAO Jia-hua. Penetration diffusion model of exponential fluid for backfill grouting through segments of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 890-897. DOI: 10.11779/CJGE201605014

盾构隧道管片注浆幂律流型浆液渗透扩散模型  English Version

基金项目: 国家自然科学基金项目(51478044,51178052)
详细信息
    作者简介:

    叶 飞(1977- ),男,教授,主要从事隧道与地下工程等方面的教学和科研。E-mail: xianyefei@126.com。

  • 中图分类号: TU43

Penetration diffusion model of exponential fluid for backfill grouting through segments of shield tunnel

  • 摘要: 为研究盾构隧道管片注浆的渗透扩散模型,以幂律流型浆液为研究对象,运用流体力学理论及毛细管组理论,推导了盾构隧道管片注浆渗透扩散模型的理论计算式,分析了其公式的适用范围及各参数的确定方法。结合具体计算案例,讨论了注浆压力、浆液性质(水灰比)、地层条件(地下水压力和地层渗透系数)等因素对浆液扩散半径的影响及浆液对管片总压力的影响。结果表明:注浆压力与浆液扩散半径成线性关系;注浆压力、水灰比及地层渗透系数增大,浆液扩散半径也增大;地下水压力增大,浆液扩散半径减小;注浆压力、水灰比、地层渗透系数增大,浆液对管片的总压力增加;地下水压力的变化不会影响管片所受的总压力。
    Abstract: In order to study the penetration diffusion model for backfill grouting through segments of shield tunnel, taking the exponential fluid as the research object and applying the fluid mechanical theory and capillary group theory, the formulae for calculating the backfill grouting through segments of shield tunnel are deduced, and the application scope and determination methods for the parameters of the formulae are analyzed. Based on a specific case, the influences of the grouting pressure, grout properties (water-cement ratio) and ground conditions (groundwater and permeability coefficient) on the grout diffusion radius and the total pressure on segments are discussed. The result shows that the grouting pressure is linear to the diffusion radius. The diffusion radius increases along with the increase of the grouting pressure, water-cement ratio and permeability coefficient, and decreases along with the increase of the groundwater pressure. The total grouting pressure on segments increases with the increase of the grouting pressure, water-cement ratio and ground permeability, but does not change along with the change of the groundwater pressure.
  • [1] 周文波. 盾构法隧道施工技术及应用[M]. 北京: 中国建筑工业出版社, 2004: 21-22. (ZHOU Wen-bo. Shield tunnelling technology[M]. Beijing: China Architecture & Building Press, 2004: 21-22. (in Chinese))
    [2] 《岩土注浆理论与工程实例》编写组. 岩土注浆理论与工程实例[M]. 北京:科学出版社, 2001. (Writing Group of "Geotechnical Grouting Theory and Engineering Instance". Geotechnical grouting theory and engineering examples[M]. Beijing: Science Press, 2001. (in Chinese))
    [3] BAKER C. Comments on paper rock stabilization in rock mechanics[C]// Muler Springer-Verlag. New York, 1974.
    [4] 叶 飞, 刘燕鹏, 苟长飞, 等. 盾构隧道壁后注浆浆液毛细管渗透扩散模型[J]. 西南交通大学学报, 2013, 48(3): 428-434. (YE Fei, LIU Yan-peng, GOU Chang-fei, et al. Capillary penetration diffusion model for backfill grouting of shield tunnel[J]. Journal of Southwest Jiaotong University, 2013, 48(3): 428-434. (in Chinese))
    [5] 杨秀竹, 雷金山, 夏力农, 等. 幂律型浆液扩散半径研究[J]. 岩土力学, 2005, 26(11): 1803-1806. (YANG Xiu-zhu, LIE Jin-shan, XIA Li-nong, et al. Study on grouting diffusion radius of exponential fluids[J]. Rock and Soil Mechanics, 2005, 26(11): 1803-1806. (in Chinese))
    [6] 杨秀竹, 王星华, 雷金山. 宾汉体浆液扩散半径的研究及应用[J]. 水利学报, 2004(6): 75-79. (YANG Xiu-zhu, WANG Xing-hua, LIE Jin-shan. Study on grouting diffusion radius of Bingham fluids[J]. Journal of Hydraulic Engineering, 2004(6): 75-79. (in Chinese))
    [7] 杨志全, 侯克鹏, 郭婷婷, 等. 黏度时变性宾汉体浆液的柱一半球形渗透注浆机制研究[J]. 岩土力学, 2011, 32(9): 2697-2703. (YANG Zhi-quan, HOU Ke-peng, GUO Ting-ting, et al. Study of column-hemispherical penetration grouting mechanism based on Bingham fluid of time-dependent behavior of viscosity[J]. Rock and Soil Mechanics, 2011, 32(9): 2697-2703. (in Chinese))
    [8] 杨志全, 侯克鹏, 杨八九, 等. 流变参数时变性幂律型水泥浆液的柱形渗透注浆机制研究[J]. 岩石力学与工程学报, 2015, 34(7): 1415-1425. (YANG Zhi-quan, HOU Ke-peng, YANG Ba-jiu, et al. Study on column penetration grouitng mechanism based on power-law cement grouts of time-dependent behavior of rheological parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1415-1425. (in Chinese))
    [9] 叶 飞, 陈 治, 苟长飞, 等. 基于球孔扩张的盾构隧道壁后注浆压密模型[J]. 交通运输工程学报, 2014, 14(1): 35-42. (YE Fei, CHEN Zhi, GOU Chang-fei, et al. Back-filled grouting compaction model of shield tunnel based on spherical cavity expansion[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 35-42. (in Chinese))
    [10] 叶 飞. 软土盾构隧道施工期上浮机理分析及控制研究[D]. 上海: 同济大学, 2007. (YE Fei. Analysis and control for upward movement of shield tunnel during construction[D]. Shanghai: Tongji University, 2007. (in Chinese))
    [11] 孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 2010: 41-44. (KONG Xiang-yan. Advanced mechanics of fluid flow in porous media[M]. Hefei: Press of University of Science and Technology of China, 2010: 41-44. (in Chinese))
    [12] 曾祥熹. 泥浆流变学与黏度测量[R]. 长沙: 中南矿冶学院地质系探工教研室, 1983: 171-186. (ZENG Xiang-xi. Rheology of drilling mud and viscosimeasurement[R]. Changsha: Central Institute of Mining and Metallurgy Geology Exploration Work in Teaching and Research Section, 1983: 171-186.(in Chinese))
    [13] 阮文军. 注浆扩散与浆液若干基本性能研究[J]. 岩土工程学报, 2005, 27(1): 69-73. (RUAN Wen-jun. Research on diffusion of grouting and basic properties of grouts[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 69-73. (in Chinese))
    [14] 苟长飞. 盾构隧道壁后注浆浆液扩散机理研究[D]. 西安: 长安大学, 2013. (GOU Chang-fei. Study on the grouts diffusion mechanism of shield tunnel back-filled grouts[D]. Xi'an: Chang'an University, 2013. (in Chinese))
计量
  • 文章访问数:  481
  • HTML全文浏览量:  4
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-13
  • 发布日期:  2016-05-24

目录

    /

    返回文章
    返回