• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

模型试验中膜式土压力盒标定及其应用

芮瑞, 吴端正, 胡港, 徐路畅, 夏元友

芮瑞, 吴端正, 胡港, 徐路畅, 夏元友. 模型试验中膜式土压力盒标定及其应用[J]. 岩土工程学报, 2016, 38(5): 837-845. DOI: 10.11779/CJGE201605009
引用本文: 芮瑞, 吴端正, 胡港, 徐路畅, 夏元友. 模型试验中膜式土压力盒标定及其应用[J]. 岩土工程学报, 2016, 38(5): 837-845. DOI: 10.11779/CJGE201605009
RUI Rui, WU Duan-zheng, HU Gang, XU Lu-chang, XIA Yuan-you. Calibration tests on diaphragm-type pressure cells[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 837-845. DOI: 10.11779/CJGE201605009
Citation: RUI Rui, WU Duan-zheng, HU Gang, XU Lu-chang, XIA Yuan-you. Calibration tests on diaphragm-type pressure cells[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 837-845. DOI: 10.11779/CJGE201605009

模型试验中膜式土压力盒标定及其应用  English Version

基金项目: 国家自然科学基金项目(51208403); 中央高校基本科研业务费专项资金项目(WUT: 2013-II-018); 武汉理工大学国家级大学生创新创业训练计划项目(20151049706038)
详细信息
    作者简介:

    芮 瑞(1981- ),男,安徽黄山人,博士,副教授,主要从事岩土工程加固设计与理论、软土地基处理方面的研究与教学工作。E-mail: r.rui@whut.edu.cn。

  • 中图分类号: TU45

Calibration tests on diaphragm-type pressure cells

  • 摘要: 土工模型试验和现场试验中常采用膜式土压力盒作为压力测试元件,即通过测量膜的变形(挠曲)量获取压力值。膜式土压力盒作为埋入介质内部的测试元件,由于土压力盒与岩土介质的刚度差,测试中受到由差异变形导致的岩土介质土拱效应的影响,特别是模型试验的应力历史也会产生不同程度的土拱效应影响。针对桩承式路堤多陷阱门模型试验中的加卸载条件,采用相同的试验用砂在相同的相对密度条件下进行了1组加载标定和4组不同填料高度下的卸荷标定试验。结果显示,加载曲线线性较好,而卸载曲线可采用指数曲线来进行拟合。将获取的标定系数应用于桩承式路堤多陷阱门模型试验当中,发现填料填筑过程中采用砂标系数处理得到的平均土压力值与路堤自重应力较为吻合。在陷阱门下沉模拟桩间土下沉过程中,分别采用砂标加载系数和卸荷系数处理土压力数据,与实际情况能够较好的吻合。
    Abstract: Diaphragm-type pressure cells are often used in geotechnical model tests and in-situ tests. The soil pressures are obtained through the measurement of the diaphragm deflection. With a gauge inserted into the soil or sand, the stiffnesses of the cells and the geo-medium are different. The soil arching in the soil or sand above the cells caused by the differential deformation will reduce the pressure on the diaphragm. In addition, different stress histories in the model tests result in different levels of influence. In the piled embankment multiple trapdoors model tests, the cells on the pile (fixed beams) experience a loading process, while the cells in the soil (movable beams) experience an unloading process. One loading calibration test and four unloading calibration tests are carried out on the same sand under the same relative density as in the model tests. The calibration results show that the stress-strain loading curves are almost linear and the unloading curves are quite similar to exponential ones. The calibration coefficients are obtained and then used to deal with the measurements. During the sand filling procedure, the average pressures obtained using the calibration coefficients coincide well with the self-weight of the embankments. During the settling (trapdoor movement) procedure, the pressures of the cells on the pile and in the soil are calculated using loading coefficients and unloading coefficients respectively. The results show that the soil pressure curves coincide well with those in the real model tests.
  • [1] 韩 煊, 张乃瑞, 钟 和, 等. 大型群桩基础静载试验与测试中的关键问题[J]. 工程勘察, 2005(1): 10-14. (HAN Xuan, ZHANG Nai-rui, ZHONG He, et al. Key problems in the static loading tests of large-scale pile group foundation[J]. Geotechnical Investigation & Surveying, 2005(1): 10-14. (in Chinese))
    [2] 朱才辉, 李 宁, 袁继国. 黄土冲沟中高填方土压力量测及分布规律探讨[J]. 岩土力学, 2015, 36(3): 827-836. (ZHU Cai-hui, LI Ning, YUAN Ji-guo. Measurement and distribution of earth pressure of high fill in loess gully[J]. Rock and Soil Mechanics, 2015, 36(3): 827-835. (in Chinese))
    [3] 黄银冰, 赵恒博, 顾长存, 等. 考虑水泥土桩增强作用的灌注桩水平承载性能现场试验研究[J]. 岩土力学, 2013, 34(4): 1109-1115. (HUANG Yin-bing, ZHAO Heng-bo, GU Chang-chun, et al. Field experimental study of lateral load capacity of filling pile enhanced by soil-cement pile[J]. Rock and Soil Mechanics, 2013, 34(4): 1109-1115. (in Chinese))
    [4] 张延军, 木林隆, 钱建固, 等. 梁板式桩筏基础现场测试分析[J]. 岩土力学, 2014, 35(11): 3253-3258. (ZHANG Yan-jun, MU Lin-long, QIAN Jian-gu, et al. Field test of piled beam-slab foundation[J]. Rock and Soil Mechanics, 2014, 35(11): 3253-3258. (in Chinese))
    [5] 陈雪华, 律文田, 王永和. 桥台台背土压力的试验研究[J]. 岩土力学, 2006, 27(8): 1407-1410. (CHENG Xue-hua, LÜ Wen-tian, WANG Yong-he. Experimental research of earth pressure behind bridge abutment[J]. Rock and Soil Mechanics, 2006, 27(8): 1407-1410. (in Chinese))
    [6] 徐光明, 陈爱忠, 曾友金, 等. 超重力场中界面土压力的测量[J]. 岩土力学, 2007, 28(12): 2671-2674. (XU Guang-ming, CHEN Ai-zhong, ZENG You-jin, et al. Measurement of boundary total stress in a multi-gravity environment[J]. Rock and Soil Mechanics, 2007, 28(12): 2671-2674. (in Chinese))
    [7] 雷文杰, 郑颖人, 王恭先, 等. 沉埋桩加固滑坡体模型试验的机制分析[J]. 岩石力学与工程学报, 2007, 26(7): 1347-1355. (LEI Wen-jie, ZHENG Ying-ren, WANG Gong-xian, et al. Mechanism analysis of slope reinforcement with deeply buried piles with model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1347-1355. (in Chinese))
    [8] 闫金凯, 殷跃平, 马 娟. 滑坡防治独立微型桩性状的大型物理模型试验研究[J]. 水文地质工程地质, 2012, 39(4): 55-60. (YAN Jin-kai, YIN Yue-ping, MA Juan. Large scale model test study on single micropile inlandslide reinforcement[J]. Hydrogeology & Engineering Geology, 2012, 39(4): 55-60(in Chinese))
    [9] 蒋明镜, 戴永生, 王新新, 等. 一种静力触探模型箱试验装置的研制及其试验研究[J]. 岩土力学, 2014, 35(7): 2109-2117. (JIANG Ming-jing, DAI Yong-sheng, WANG Xin-xin, et al. Development of a calibration chamber for cone penetration test and corresponding experimental research[J]. Rock and Soil Mechanics, 2014, 35(7): 2109-2117. (in Chinese))
    [10] WEILER W A, KULHAWY F H. Factors affecting stress cell measurements in soil[J]. Journal of the Geotechnical Engineering Division, 1982, 108(12): 1529-1548.
    [11] DAIGLE L, ZHAO J Q. The influence of temperature on earth pressure cell readings[J]. Canadian Geotechnical Journal, 2004, 41(3): 551-559.
    [12] 曾 辉, 余尚江. 岩土应力传感器设计和使用原则[J]. 岩土工程学报,1994, 16(1): 93-98. (ZENG Hui, YU Shang-jiang. Design and use policy of stress sensors in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(1): 93-98. (in Chinese))
    [13] ZHU B, JARDINE R J, FORAY P. The use of miniature soil stress measuring cells in laboratory applications involving stress reversals[J]. Soils and Foundations, 2009, 49(5): 675-688.
    [14] TALESNICK M. Measuring soil pressure within a soil mass[J]. Canadian Geotechnical Journal, 2013, 50(7): 716-722.
    [15] 张立祥, 罗 强, 张 良, 等. 土压力传感器在硬土介质中的非线性响应分析[J]. 岩土力学, 2013, 34(12): 3633-3640. (ZHANG Li-xiang, LUO Qiang, ZHANG Liang, et al. Analysis of nonlinear response of soil pressure transducer in high-modulus soil[J]. Rock and Soil Mechanics, 2013, 34(12): 3633-3640. (in Chinese))
    [16] TALESNICK M. Measuring soil contact pressure on a solid boundary and quantifying soil arching[J]. Geotechnical Testing Journal, 2005, 28(2): 171-179.
    [17] 芮 瑞, 黄 成, 夏元友, 等. 砂填料桩承式路堤土拱效应模型试验[J]. 岩土工程学报, 2013, 35(11): 2082-2089. (RUI Rui, HUANG Cheng, XIA Yuan-you, et al. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089. (in Chinese))
    [18] HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318.
  • 期刊类型引用(4)

    1. 朱宝龙,李凯,林其,于时恩. 层状地基对脉冲风洞天平基础振动特征影响分析. 地震工程与工程振动. 2024(06): 125-137 . 百度学术
    2. 张聪,冯忠居,王富春,马晓谦,陈慧芸. 强震作用下嵌岩群桩时程响应振动台试验. 应用基础与工程科学学报. 2023(03): 703-714 . 百度学术
    3. 王志宇,唐贞云,杜修力. 时域稳定的基础频响离散有理近似参数识别方法. 岩土工程学报. 2021(09): 1708-1714 . 本站查看
    4. 冯忠居,张聪,何静斌,董芸秀,袁枫斌. 强震作用下嵌岩单桩时程响应振动台试验. 岩土力学. 2021(12): 3227-3237 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  476
  • HTML全文浏览量:  6
  • PDF下载量:  412
  • 被引次数: 9
出版历程
  • 收稿日期:  2015-04-26
  • 发布日期:  2016-05-24

目录

    /

    返回文章
    返回