• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

致密岩石气体渗流滑脱效应试验研究

王环玲, 徐卫亚, 巢志明, 孔茜

王环玲, 徐卫亚, 巢志明, 孔茜. 致密岩石气体渗流滑脱效应试验研究[J]. 岩土工程学报, 2016, 38(5): 777-785. DOI: 10.11779/CJGE201605002
引用本文: 王环玲, 徐卫亚, 巢志明, 孔茜. 致密岩石气体渗流滑脱效应试验研究[J]. 岩土工程学报, 2016, 38(5): 777-785. DOI: 10.11779/CJGE201605002
WANG Huan-ling, XU Wei-ya, CHAO Zhi-ming, KONG Qian. Experimental study on slippage effects of gas flow in compact rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 777-785. DOI: 10.11779/CJGE201605002
Citation: WANG Huan-ling, XU Wei-ya, CHAO Zhi-ming, KONG Qian. Experimental study on slippage effects of gas flow in compact rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 777-785. DOI: 10.11779/CJGE201605002

致密岩石气体渗流滑脱效应试验研究  English Version

基金项目: 江苏省青蓝工程、国家自然科学基金项目(11172090,11272113,51479049,11572110); 江苏省自然科学基金项目(BK2012809)
详细信息
    作者简介:

    王环玲(1976- ),女,教授,博士生导师,主要从事岩石力学与岩石工程等方面的教学和科研。E-mail:whl_hm@163.com。

  • 中图分类号: TU451

Experimental study on slippage effects of gas flow in compact rock

  • 摘要: 由于致密结构和低的渗透率,气体在孔隙喉道小的致密岩石中流动会受到滑脱效应的影响。以湖南某试验场地致密砂岩为研究对象,对岩样进行了微观结构的SEM分析,通过一系列围压和孔隙压力作用下的砂岩气体流量和渗透率测试,研究气体在致密岩石中渗流特征,证明了致密砂岩气体流动存在滑脱效应现象,其渗流不符合Darcy定律。分析了孔压对滑脱效应的影响、滑脱效应对气测渗透率的影响以及滑脱因子与绝对渗透率的函数关系。研究结果表明,滑脱效应对气测渗透率的影响随着围压和气体孔隙压力的变化有所不同。同等围压下,孔隙压力越小,滑脱效应越明显,导致气测渗透率大于砂岩绝对渗透率。同等孔压下,当围压达到某一值后,其对滑脱效应的影响有限,同时也说明围压对岩石的压密是有限的。砂岩的平均气体孔隙压力与气测渗透率关系更加符合二次项曲线方程。计算获得的克努森数Kn说明了在相对高的围压和低的孔隙压力条件下,气体渗流过程位于滑脱流和过渡流之间,传统的N-S方程可能不再适用,应用Knudsen扩散方程更加合理,特别是当克努森数Kn比较高时。
    Abstract: Due to low porosity structure and low permeability, the gas flow in small pore throats in compact rock is usually affected by the gas slippage effects. In this study, the compact sandstone at a test site in Hunan Province is taken as an example, the micro-structure is studied using the scanning electron microscopy (SEM), and the permeability and flow rate of the sandstone under different pore pressures and confining pressures are measured. It is verified by the experiment that the gas flow in the compact rock does not meet the Darcy’s law due to the effect of gas slippage, and that the measured permeability should be corrected by the gas slippage effects. The results show that the impact of slippage on the gas permeability is different due to the change of the confining pressure and pore pressure. Under the same confining pressure, when the pore pressure is smaller, the gas slippage effects are more obvious, leading to that the measured permeability is greater than the absolute permeability. Under the same pore pressure, after the confining pressure reaches a certain value, it has a limited impact on the slippage, and the confining pressure has a limited impact on the rock compaction. The relationship between the average pore pressure and the gas permeability obeys the quadratic term equation of Knudsen’s permeability. The calculated Knudsen number (Kn) states that under relatively high confining pressure and low pore pressure, the gas flow is between slip flow and transitional flow, the traditional fluid dynamics N-S equation starts to fail, and it is safer to use Knudsen’s diffusion equation.
  • [1] JONES F O, OWENS W W. A laboratory study of low permeability gas sands[J]. Society of Petroleum Engineers, 1980, 32(9): 1-10.
    [2] SKOCZYLAS F, HENRY J P. A study of the intrinsic permeability of granite to gas[J]. Int J Rock Mech Min Sci & Geomech Abstr, 1995, 32(2): 171-179.
    [3] CROISE´ J, SCHLICKENRIEDER L, MARSCHALL P, et al. Hydrogeological investigations in a low permeability claystone formation: the Mont Terri Rock Laboratory[J]. Phys Chem Earth, 2004, 29: 3-15.
    [4] TSANG C F, BERNIERB F, DAVIES C. Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays-in the context of radioactive waste disposal[J]. Int J Rock Mech Min Sci, 2005, 2: 109-125.
    [5] DAVY C A, SKOCZYLAS F, BARNICHON J D et al. Permeability of macro-cracked argillite under confinement: Gas and water testing[J]. Phys Chem Earth, 2007, 32: 667-680.
    [6] 朱伯靖, 石耀霖. 波尔兹曼数字岩芯致密砂岩渗透率研究[J]. 力学学报, 2013, 45(3): 384-395. (ZHU Bo-jing, SHI Yao-lin. Study of tight sandstone permeability from lattice boltzmann digital rock model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 384-395. (in Chinese))
    [7] WANG H L, XU W Y, SHAO J F, et al. The gas permeability properties of low-permeability rock in the process of triaxial compression test [J]. Materials Letters, 2014, 116: 386-388.
    [8] 王环玲, 徐卫亚, 左 婧, 等. 低渗透岩石渗透率与孔隙率演化规律的气渗试验研究[J]. 水利学报, 2015, 46(1): 58-67. (WANG Huan-ling, XU Wei-ya, ZUO Jing, et al. Evolution law research on the permeability and porosity of low-permeability rock based on gas permeability test[J]. Journal of Hydraulic Engineering, 2015, 46(1): 58-67. (in Chinese))
    [9] KLINKENBERG L J. The permeability of porous media to liquids and gases[J]. API Drilling and Production Practice, 1941, 23: 200-213.
    [10] ZIARANI A S. Aguilera Roberto Knudsen’s permeability correction for tight porous media[J]. Transp Porous Med, 2012, 91: 239-260.
    [11] 陈代珣. 渗流气体滑脱现象与渗透率变化的关系[J]. 力学学报, 2002, 34(1): 96-100. (CHEN Dai-xun. Gas slippage phenomenon and change of permeability when gas flowes in tight porous media[J]. Acta Mechanica Sinica, 2002, 34(1): 96-100. (in Chinese))
    [12] 肖晓春, 潘一山. 考虑滑脱效应的煤层气渗流数学模型及数值模拟[J]. 岩石力学与工程学报, 2005, 24(16): 2966-2970. (XIAO Xiao-chun, PAN Yi-shan. Mathematical model and numerical simulation of coal-bed methane percolation flow equation considering slippage effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2966-2970. (in Chinese))
    [13] 刘建军, 刘光贵, 胡雅衽. 低渗透岩石非线性渗流规律研究[J]. 岩石力学与工程学报, 2003, 22(4): 556-561. (LIU Jian-jun, LIU Guang-gui, HU Ya-ren. Study on nonlinear seepage of rock of low permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 556-561. (in Chinese))
    [14] 韩小妹, 王恩志, 刘庆杰. 低渗透岩石的单相水非Darcy渗流实验[J]. 清华大学学报(自然科学版), 2004, 44(6): 804-807. (HAI Xiao-mei, WANG En-zhi, LIU Qing-jie. Steady flow experiment of single-phase water through low permeability rocks[J]. Tsinghua Univ (Sci & Tech), 2004, 44(6): 804-807. (in Chinese))
    [15] 杨春和, 李银平, 屈丹安, 等. 层状盐岩力学特性研究进展[J]. 力学进展, 2008, 38(4): 484-494. (YANG Chun-he, LI Yin-ping, QU Dan-an, et al. Advances in researches of the mechanical behaviors of bedded salt rocks[J]. Advances in Mechanics, 2008, 38(4): 484-494. (in Chinese))
    [16] HEID J G, MCMAHON J J, NIELSEN RF et al. Study of the permeability of rocks to homogenous fluids[M]. New York: API Drilling & Production Practice Press, 1950: 230-246.
    [17] JONES F O, OWENS W W. A laboratory study of low permeability gas sands[C]// 1979 SPE Symposium on Low-Permeability Gas Reservoirs. Denver, 1979: 20-22.
    [18] COSENZA P, GHOREYCHI M. Effects of very low permeability on the long-term evolution of a storage cavern in rock salt[J]. Int J Rock Mech Min, 1999, 36(4): 527-533.
    [19] FLORENCE F A, RUSHING J, NEWSHAM K E, et al. Improved permeability prediction relations for low permeability sands[C]// Rocky Mountain Oil & Gas Technology Symposium. Denver, 2007.
    [20] CIVAN F. Effective correlation of apparent gas permeability in tight porous media[J]. Transp Porous Media, 2010, 82: 375-384.
    [21] 陈卫忠, 杨建平, 伍国军, 等. 低渗透介质渗透性试验研究[J]. 岩石力学与工程学报, 2008, 27(2): 236-243. (CHEN Wei-zhong, YANG Jian-ping, WU Guo-jun, et al. Experimental study on permeability in low permeability media[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 236-243. (in Chinese))
    [22] 霍凌婧, 杨正明, 张亚蒲, 等. 火山岩气藏滑脱效应影响因素研究[J]. 石油天然气学报, 2009, 31(1): 147-150. (HE Ling-qian, YANG Zheng-ming, ZHANG Ya-pu, et al. Influencing factors of slippage effect of volcanic gas reservoir[J]. Journal of Oil and Gas Technology, 2009, 31(1): 147-150. (in Chinese))
    [23] 肖晓春, 潘一山. 滑脱效应影响的低渗煤层气运移实验研究[J]. 岩土工程学报, 2009, 31(10): 1554-1558. (XIAO Xiao-chun, PAN Yi-shan. Experimental study of gas transfusion with slippage effects in hypotonic coal reservoir[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1554-1558. (in Chinese))
    [24] LOOSVELDT H, LAFHAJ Z, SKOCZYLAS F. Experimental study of gas and liquid permeability of a mortar[J]. Cement and Concrete Research, 2002, 32: 1357-1363.
    [25] WANG H L, XU W Y, SHAO J F. Experimental researches on hydro-mechanical properties of altered rock under confining pressures[J]. Rock Mech Rock Eng, 2014, 47: 485-493.
    [26] XIE S Y, SHAO J F. Elastoplastic deformation of a porous rock and water interaction[J]. Int Journal Plasticity, 2006, 22: 2195-2225.
    [27] BAEHR A L, HULT M F. Evaluation of unsaturated zone air permeability through pneumatic tests[J]. Water Resour Res, 1991, 27(10): 2605-2617.
    [28] WU Y S, PRUESS K, PERSOFF P. Gas flow in porous media with Klinkenberg effects[J]. Transp Porous Media, 1998, 32: 117-137.
    [29] ZHU G Y, LIU L, YANG Z M, et al. Experiment and mathematical model of gas flow in low permeability porous media. New trends in fluid mechanics research[C]// Proceedings of the Fifth International Conference on Fluid Mechanics. Shanghai, 2007: 15-19.
    [30] TANG G H, TAO W Q, HE Y L. Gas slippage effect on microscale porous flow using the lattice Boltzmann method [J]. Phys Rev, 2005, E72, 056301-056308.
    [31] 朱光亚, 刘先贵, 李树铁, 等. 低渗气藏气体渗流滑脱效应影响研究[J]. 天然气工业, 2007, 27(5): 50-53. (ZHU Guang-ya, LIU Xian-gui, LI Shu-tie, et al. A study of slippage effect of gas percolation in low permeability gas pools[J]. Natural Gas Industry, 2007, 27(5): 50-53. (in Chinese))
    [32] BESKOK A, KARNIADAKIS GE. A model for flows in channels, pipes, and ducts at micro and nano scales[J]. Nanoscale Microscale Thermophys Eng, 1999(3): 43-77.
    [33] MA J S, SANCHEZ J P, WU K, et al. Pore network model for simulating non-ideal gas flow in micro- and nano-porous materials[J]. Fuel, 2014, 116: 498-508.
计量
  • 文章访问数:  570
  • HTML全文浏览量:  4
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-10
  • 发布日期:  2016-05-24

目录

    /

    返回文章
    返回