• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

一种模拟土体流动的连续体数值方法

张雪, 盛岱超

张雪, 盛岱超. 一种模拟土体流动的连续体数值方法[J]. 岩土工程学报, 2016, 38(3): 562-569. DOI: 10.11779/CJGE201603021
引用本文: 张雪, 盛岱超. 一种模拟土体流动的连续体数值方法[J]. 岩土工程学报, 2016, 38(3): 562-569. DOI: 10.11779/CJGE201603021
ZHANG Xue, SHENG Dai-chao. Continuum approach for modelling soil flow in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 562-569. DOI: 10.11779/CJGE201603021
Citation: ZHANG Xue, SHENG Dai-chao. Continuum approach for modelling soil flow in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 562-569. DOI: 10.11779/CJGE201603021

一种模拟土体流动的连续体数值方法  English Version

基金项目: 国家重点基础; 研究发展计划("973"计划)课题(2014CB047001)
详细信息
    作者简介:

    张 雪(1985- ),男,博士后,主要从事岩土工程领域大变形问题的数值模拟研究.E-mail: xue.zhang@uon.edu.au.

  • 中图分类号: TU43

Continuum approach for modelling soil flow in geotechnical engineering

  • 摘要: 介绍了一种先进的能够处理土体流动问题的连续体数值模拟方法----粒子有限元法(PFEM).这一方法不仅继承了传统有限元法扎实的数学理论基础(即每一个增量步分析均为经典拉格朗日有限元分析过程),同时还能绕开在大变形情况下由于固定网格拓扑结构带来的计算困难.详细阐述了粒子有限元法的基本思想以及如何基于已有的有限元法程序发展粒子有限元法,并揭示了粒子有限元法中的几个关键性技术.为验证粒子有限元法的准确性并展示其先进性,采用粒子有限元法模拟了准静态和动态颗粒柱的坍塌问题以及边坡稳定性问题.模拟结果表明:粒子有限元法特别适合于模拟包含岩土材料流固转换行为的大变形工程问题.
    Abstract: A novel continuum approach called particle finite element method (PFEM) which is capable of modelling soil flow in geotechnical engineering is introduced. This approach inherits the solid mathematical foundation of the traditional finite element method in the sense that each incremental analysis is conducted via the classical Lagrangian finite element procedure and also circumvents the computational difficulties resulting from the meshes with fixed geometric topology in the case of large deformations. This paper details the fundamental idea of the PFEM as well as how to develop the PFEM based on an existing finite element program with some key technologies being discovered. To verify its correctness and exhibit its advantages, the PFEM is utilized to simulate the quasi-static and dynamic collapse of granular columns and slope stability problems. It is shown that the PFEM is particularly suitable for the simulation of engineering problems involving solid-fluid transitional behaviour of geomaterials.
  • [1] DONEA J, HUERTA A, PONTHOT J P, et al. Arbitrary Lagrangian-Eulerian methods[M]. New York: John Wiley & Sons, Ltd, 2004.
    [2] NAZEM M, SHENG D C, CARTER J P. Stress integration and mesh refinement for large deformation in geomechanics[J]. International Journal for Numerical Methods in Engineering, 2006, 65(7): 1002-1027.
    [3] 毕庆涛, 肖昭然, 丁树云, 等. 静压桩压入过程的数值模拟[J]. 岩土工程学报, 2011, 33(增刊2): 74-77. (BI Qing-tao, XIAO Zhao-ran, DING Shu-yun, et al. Numerical modeling of penetrating of jacked piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 74-77. (in Chinese))
    [4] 王宣平, 李锡夔. 基于ALE方法的3D充填流动模拟[J].计算力学学报, 2009, 26(6): 823-828. (WANG Xuan-ping, LI Xi-kui. Numerical simulation of three dimensional mold filling flow using Arbitrary Lagrangian Eulerian finite element method[J]. Chinese Journal of Computational Mechanics, 2009, 26(6): 823-828. (in Chinese))
    [5] E, IDELSOHN S R, DEL PIN F, et al. The particle finite element method - an overview[J]. International Journal of Computational Methods, 2004, 1(2): 267-307.
    [6] ZHANG X, KRABBENHOFT K, PEDROSO D M, et al. Particle finite element analysis of large deformation and granular flow problems[J]. Computers and Geotechnics, 2013, 54: 133-142.
    [7] CARBONELL J, OÑATE E, SUÁREZ B. Modeling of ground excavation with the particle finite-element method[J]. Journal of Engineering Mechanics, 2010, 136(4): 455-463.
    [8] ZHANG X, KRABBENHOFT K, SHENG D. Particle finite element analysis of the granular column collapse problem[J]. Granular Matter, 2014, 16(4): 609-619.
    [9] ZHANG X, KRABBENHOFT K, SHENG D, et al. Numerical simulation of a flow-like landslide using the particle finite element method[J]. Computational Mechanics, 2015, 55(1): 167-177.
    [10] ZHANG X, SHENG D, KOURETZIS G P, et al. Numerical investigation of the cylinder movement in granular matter[J]. Physical Review E, 2015, 91(2): 022204.
    [11] EDELSBRUNNER H, MUCKE E P. Three-dimensional alpha shapes[J]. ACM Transactions on Graphics, 1994, 13(1): 43-72.
    [12] CREMONESI M, FRANGI A, PEREGO U. A Lagrangian finite element approach for the analysis of fluid-structure interaction problems[J]. International Journal for Numerical Methods in Engineering, 2010, 84(5): 610-630.
    [13] KRABBENHOFT K, LYAMIN A V. Computational Cam clay plasticity using second-order cone programming[J]. Computer Methods in Applied Mechanics and Engineering, 2012(209/210/211/212): 239-249.
    [14] KRABBENHOFT K, LYAMIN A V, SLOAN S W. Formulation and solution of some plasticity problems as conic programs[J]. International Journal of Solids and Structures, 2007, 44(5): 1533-1549.
    [15] 蒋明镜, 肖 俞, 朱方园. 深海能源土宏观力学性质离散元数值模拟分析[J]. 岩土工程学报, 2013, 35(1): 157-163. (JIANG M, XIAO Y, ZHU F. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate bearing soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163. (in Chinese))
    [16] 黄晚清, 陆 阳. 散粒体重力堆积的三维离散元模拟[J]. 岩土工程学报, 2006, 28(12): 2139-2143. (HUANG Wan-qing, LU Yang. 3D DEM simulation of random packing of particulates under gravity[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2139-2143. (in Chinese))
    [17] 王志亮, 徐庆华. 无网格法在静载下土体二维固结问题中的应用[J]. 岩土工程学报, 2004, 26(1): 152-154. (WANG Zhi-liang, XU Qing-hua. Application of meshless method in soil 2-D consolidation subjected to static uniform loading[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 152-154. (in Chinese))
    [18] 黄 雨, 郝 亮, 野々山人. SPH方法在岩土工程中的研究应用进展[J]. 岩土工程学报, 2008, 30(2): 256-262. (HUANG Yu, HAO Liang, NONOYAMA H. The state of the art of SPH method applied in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 256-262. (in Chinese))
    [19] MÉRIAUX C. Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall[J]. Physics of Fluids, 2006, 18(9): 093301.
    [20] OWEN P J, CLEARY P W, MÉRIAUX C. Quasi-static fall of planar granular columns: comparison of 2D and 3D discrete element modelling with laboratory experiments[J]. Geomechanics and Geoengineering: An International Journal, 2009, 4(1): 55-77.
    [21] BUI H H, FUKAGAWA R, SAKO K, et al. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12): 1537-1570.
    [22] LAJEUNESSE E, MANGENEY-CASTELNAU A, VILOTTE J P. Spreading of a granular mass on a horizontal plane[J]. Physics of Fluids, 2004, 16(7): 2371-2381.
    [23] LUBE G, HUPPERT H E, SPARKS R S J, et al. Collapses of two-dimensional granular columns[J]. Physical Review E, 2005, 72(4): 041301.
    [24] GRIFFITHS D V, LANE P. A Slope stability analysis by finite elements[J]. Géotechnique, 1999, 49: 387-403.
计量
  • 文章访问数:  410
  • HTML全文浏览量:  10
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-15
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回