• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

有限元上限分析网格自适应方法及其工程应用

赵明华, 张锐

赵明华, 张锐. 有限元上限分析网格自适应方法及其工程应用[J]. 岩土工程学报, 2016, 38(3): 537-545. DOI: 10.11779/CJGE201603018
引用本文: 赵明华, 张锐. 有限元上限分析网格自适应方法及其工程应用[J]. 岩土工程学报, 2016, 38(3): 537-545. DOI: 10.11779/CJGE201603018
ZHAO Ming-hua, ZHANG Rui. Adaptive mesh refinement of upper bound finite element method and its applications in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 537-545. DOI: 10.11779/CJGE201603018
Citation: ZHAO Ming-hua, ZHANG Rui. Adaptive mesh refinement of upper bound finite element method and its applications in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 537-545. DOI: 10.11779/CJGE201603018

有限元上限分析网格自适应方法及其工程应用  English Version

详细信息
    作者简介:

    赵明华(1956- ),男,湖南洞口县人,教授,博士生导师,主要从事桩基及软土地基处理研究.E-mail: mhzhaohd@21cn.com.

  • 中图分类号: TU43

Adaptive mesh refinement of upper bound finite element method and its applications in geotechnical engineering

  • 摘要: 网格离散误差是有限元上限分析计算误差的主要来源.为了对计算网格进行优化,从而有效地降低数值离散误差,基于前沿推进网格划分技术并以单元内能量耗散率的相对大小为控制指标,提出了一种有限元上限分析的网格自适应策略.首先,引入前沿推进网格划分技术,实现在网格生成过程中对单元尺寸和形状的灵活控制;其次,将当前计算网格中各单元能量耗散率的相对大小转化为新计算网格中单元尺寸的分布信息,并以此指示新计算网格的生成,成功地实现了有限元上限分析计算网格的自适应优化;最后,通过算例分析验证了所提出方法的有效性.
    Abstract: The grid discretization error is the main source of calculation error of finite element upper bound limit analysis. To optimize the calculation mesh and reduce the numerical discretization error, an adaptive mesh refinement strategy is proposed based on the advancing front grid generation technique and taking the relative value of elemental energy dissipation as control index. Firstly, the advancing front grid generation technique is introduced to gain a more flexible control of sizes and shapes of elements during the mesh generation process. Secondly, the relative value of elemental energy dissipation in the current mesh is transformed into the distribution information of element sizes in the new mesh, and then this information is used to indicate the new mesh generation, which successfully realizes the optimization of calculation mesh of finite element upper bound limit analysis. Finally, the effectiveness of the proposed method is verified by example analysis.
  • [1] 陈祖煜. 土力学经典问题的极限分析上,下限解[J]. 岩土工程学报, 2002, 24(1): 1-11. (CHEN Zu-yu. Limit analysis for the classic problems of soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 1-11. (in Chinese))
    [2] CHEN W F. Limit analysis and soil plasticity[M]. Amsterdam: Elsevier Scientific Publishing Company, 1975.
    [3] SLOAN S W. Geotechnical stability analysis[J]. Géotechnique, 2013, 63(7): 531-572.
    [4] ANDERHEGGEN E, KNOPFEL H. Finite element limit analysis using linear programming[J]. International Journal of Solids and Structures, 1972, 8(12): 1413-1431.
    [5] BOTTERO A, NEGRE R, PASTOR J, et al. Finite element method and limit analysis theory for soil mechanics problems[J]. Computer Methods in Applied Mechanics and Engineering, 1980, 22(1): 131-149.
    [6] PASTOR J, TURGEMAN S. Limit analysis in axisymmetrical problems: numerical determination of complete statical solutions[J]. International Journal of Mechanical Sciences, 1982, 24(2): 95-117.
    [7] SLOAN S W, KLEEMAN P W. Upper bound limit analysis using discontinuous velocity fields[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127: 293-314.
    [8] 王均星, 王汉辉, 吴雅峰. 土坡稳定的有限元塑性极限分析上限法研究[J]. 岩石力学与工程学报, 2004, 23(11): 1867-1873. (WANG Jun-xing, WANG Han-hui, WU Ya-feng. Stability analysis of soil slope by finite element method with plastic limit upper bound[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(11): 1867-1873. (in Chinese))
    [9] 杨小礼, 李 亮, 刘宝琛. 大规模优化及其在上限定理有限元中的应用[J]. 岩土工程学报, 2001, 23(5): 602-605. (YANG Xiao-li, LI Liang, LIU Bao-chen. Large-scale optimization and its application to upper bound theorem using kinematical element method[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 602-605. (in Chinese))
    [10] 杨 峰, 阳军生, 张学民. 基于线性规划模型的极限分析上限有限元的实现[J]. 岩土力学, 2011, 32(3): 914-921. (YANG Feng, YANG Jun-sheng, ZHANG Xue-min. Implementation of finite element upper bound solution of limit analysis based on linear programming model[J]. Rock and Soil Mechanics, 2011, 32(3): 914-921. (in Chinese))
    [11] LYAMIN A V, SLOAN S W. Upper bound limit analysis using linear finite elements and non-linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 573-611.
    [12] CIRIA H. Computation of upper and lower bounds in limit analysis using second-order cone programming and mesh adaptivity[D]. Cambridge: Massachusetts Institute of Rechnology, 2002.
    [13] KRABBENHOFT K, LYAMIN A V, HAJIAJ M, et al. A new discontinuous upper bound limit analysis formulaiton[J]. International Journal of Numerical Methods for Engineering, 2005, 63(7): 1069-1083.
    [14] MAKRODIMOPOULOS A, MARTIN C M. Upper bound limit analysis using simplex strain elements and second-order cone programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(6): 835-865.
    [15] CHRISTIANSEN E, EDMUND O S. Automatic mesh refinement in limit analysis[J]. International Journal for Numerical Methods in Engineering, 2001, 50(6): 1331-1346.
    [16] 李大钟, 郑榕明, 王金安, 等. 自适应有限元极限分析及岩土工程中的应用[J]. 岩土工程学报, 2013, 35(5): 922-929. (LI Da-zhong, ZHENG Rong-ming, WANG Jin-an, et al. Application of finite-element-based limit analysis with mesh adaptation in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 922-929. (in Chinese))
    [17] BORGES L, ZOUAIN N, COSTA C, et al. An adaptive approach to limit analysis[J]. International Journal of Solids and Structures, 2001, 38(10/11/12/13): 1707-1720.
    [18] LYAMIN A V, SLOAN S W, KRABBENHOFT K, et al. Lower bound limit analysis with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1961-1974.
    [19] CIRIA H, PERAIRE J, BONET J. Mesh adaptive computation of upper and lower bounds in limit analysis[J]. International Journal for Numerical Methods in Engineering, 2008, 75(8): 899-944.
    [20] MUNOZ J J, BONET J, HUERTA A, et al. Upper and lower bounds in limit analysis: adaptive meshing strategies and discontinuous loading[J]. International Journal for Numerical Methods in Engineering, 2009, 77(4): 471-501.
    [21] COHN M Z, MAIER G. Engineering plasticity by mathematical programming[M]. New York: Pergamon Press, 1979.
    [22] 赵明华, 张 锐, 雷 勇. 基于可行弧内点算法的上限有限单元法优化求解[J]. 岩土工程学报, 2014, 36(4): 604-611. (ZHAO Ming-hua, ZHANG Rui, LEI Yong. Optimization of upper bound finite element method based on feasible arc interior point algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 604-611. (in Chinese))
    [23] HERSKOVITS J, SANTOS G. Feasible arc interior point algorithm for nonlinear optimization[C]// Computational Mechanics, New Trends and Applications. Barcelona, 1998.
    [24] HERSKOVITS J, MAPPA P, GOULART E, et al. Mathematical programming model and algorithms for engineering design optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(33): 3244-3268.
    [25] THOMPSON J F, SONI B K, WEATHERILL N P. Hand book of Grid Generation[M]. Boca Raton London New York Washington D C: CCR Press, 1998.
    [26] 钱家欢, 殷宗泽. 土工原理与计算[M]. 2版. 北京: 中国水利水电出版社, 1996. (QIAN Jia-huan, YIN Zong-ze. Principles of soil engineering and calculation[M]. 2nd ed. Beijing: China Water Power Press, 1996. (in Chinese))
计量
  • 文章访问数:  419
  • HTML全文浏览量:  2
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-15
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回