• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

非贯通节理岩体单轴压缩动态损伤本构模型

刘红岩, 王新生, 张力民, 张力国

刘红岩, 王新生, 张力民, 张力国. 非贯通节理岩体单轴压缩动态损伤本构模型[J]. 岩土工程学报, 2016, 38(3): 426-436. DOI: 10.11779/CJGE201603005
引用本文: 刘红岩, 王新生, 张力民, 张力国. 非贯通节理岩体单轴压缩动态损伤本构模型[J]. 岩土工程学报, 2016, 38(3): 426-436. DOI: 10.11779/CJGE201603005
LIU Hong-yan, WANG Xin-sheng, ZAHNG Li-min, ZHANG Li-guo. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 426-436. DOI: 10.11779/CJGE201603005
Citation: LIU Hong-yan, WANG Xin-sheng, ZAHNG Li-min, ZHANG Li-guo. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 426-436. DOI: 10.11779/CJGE201603005

非贯通节理岩体单轴压缩动态损伤本构模型  English Version

基金项目: 国家自然科学基金项目(41002113,41162009); 中央高校基本科研业务费专项资金项目(2-9-2014-019,2-9-2015-263)
详细信息
    作者简介:

    刘红岩(1975- ),男,博士,教授,注册岩土工程师,高级爆破工程师,主要从事岩土工程方面的教学和科研.E-mail: lhy1204@cugb.edu.cn.

  • 中图分类号: TU43

A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression

  • 摘要: 非贯通节理岩体是同时含有节理,裂隙等宏观缺陷及微裂隙,微孔洞等细观缺陷的复合损伤地质材料,基于此提出了在非贯通节理岩体动态损伤本构模型中应同时考虑宏,细观缺陷的观点.首先对基于细观动态断裂机理的经典动态损伤本构模型----TCK模型进行了阐述,其次针对目前节理岩体损伤变量定义中仅考虑节理几何参数而未考虑其强度参数的不足,基于能量原理和断裂力学理论推导得出了同时考虑节理几何及强度参数的宏观损伤变量(张量)的计算公式;第三,基于Lemaitre等效应变假设推导了综合考虑宏,细观缺陷的复合损伤变量(张量);第四,借鉴前人基于复合材料力学的观点,考虑了节理法向及切向刚度等变形参数对岩体动态力学特性的影响,进而建立了基于TCK模型的非贯通节理岩体单轴压缩动态损伤本构模型.并利用该模型讨论了载荷应变率,节理内摩擦角,节理厚度,节理法向及切向刚度和节理倾角等对岩体动态力学特性的影响规律.计算结果与目前的理论及试验研究结果比较吻合,从而说明了该模型的合理性.
    Abstract: The rock mass with non-persistent joints is a kind of compound damage geological material which contains both the macroscopic flaws such as the joint and crack and the mesoscopic ones such as the microcrack and microhole. Therefore, the viewpoint that the above two kinds of flaws should be simultaneously considered in the dynamic damage constitutive model for jointed rock mass is proposed. Firstly, the classic rock dynamic damage constitutive model, based on mesoscopic dynamic fracture mechanism namely TCK model, is discussed. Secondly, aiming at the shortcoming that the geometrical parameters are only considered but the strength ones are not in the current damage variable definition, the computational formula for the macroscopic damage variable (tensor) of the jointed rock mass which can consider the geometrical and strength parameters at the same time is obtained based on the energy principle and fracture mechanics theory. Thirdly, the compound damage variable (tensor) comprehensively considering macroscopic and mesoscopic flaws based on the Lemaitre equivalent strain hypothesis is deduced. Fourthly, based on the viewpoint of the compound material mechanics proposed by others, the effect of the joint deformation parameters such as the normal and shear stiffness on the dynamic mechanical behavior of rock mass is considered. Finally, the corresponding dynamic damage constitutive model for the jointed rock mass under uniaxial compression based on TCK model is established. The effects of the strain ratio of loads, internal friction angle of joints, joint depth, shear and normal stiffnesses of joints and dip angles of joints on the dynamic mechanical behavior of rock mass are discussed using the proposed model. The calculated results fit very well the current experimental and theoretical ones, indicating the rationality of the proposed model.
  • [1] BUDIANSKY B, O'CONNELL R J. Elastic moduli of a cracked solid[J]. International Journal of Solids and Structures, 1976, 12(2): 81-97.
    [2] GRADY D L, KIPP M L. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1980, 17: 147-157.
    [3] TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack induced damage accumulation in brittle rock under dynamic loading[J]. Computer Method in Applied Mechanics & Engineering, 1986, 55: 301-320.
    [4] ZUO Q H, DISILVESTRO D, RICHTER J D. A crack-mechanics based model for damage and plasticity of brittle materials under dynamic loading[J]. International Journal of Solids and Structures, 2010, 47: 2790-2798.
    [5] ZHOU X P, YANG H Q. Micromechanical modeling of dynamic compressive responses of mesoscopic heterogeneous brittle rock[J]. Theoretical and Applied Fracture Mechanics, 2007, 48: 1-20.
    [6] WANG Z L, LI Y C, WANG J G. A damage-softening statistical constitutive model considering rock residual strength[J]. Computers & Geosciences, 2007, 33: 1-9.
    [7] TANG C A. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-PartⅠ: Effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37: 555-569
    [8] 刘红岩, 吕淑然, 张力民. 基于组合模型法的贯通节理岩体动态损伤本构模型[J]. 岩土工程学报, 2014, 36(10): 140-147. (LIU Hong-yan, LV Shu-ran, ZHANG Li-min. Dynamic damage constitutive model for persistent jointed rock mass based on combination model method[J]. Chinese Journal of Geotechnical Engineering, 2004, 36(10): 1814-1821. (in Chinese))
    [9] LIU H Y, LV S R, ZHANG L M, et al. A dynamic damage constitutive model for a rock mass with persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 132-139.
    [10] NIU S J, JING H W, HU K, et al. Numerical investigation on the sensitivity of jointed rock mass strength to various factors[J]. Mining Sciences and Technology, 2010, 20: 530-534.
    [11] 杨更社, 谢定义. 岩体宏观细观损伤的耦合计算分析[C]// 第六次全国岩石力学与工程学术大会论文集. 武汉, 2000: 327-329. (YANG Geng-she, XIE Ding-yi. Coupling analysis on the macro-damage and meso-damage of rock masses[C]// Symposium on the Sixth National Rock Mechanics and Engineering Academic Conference. Wuhan, 2000: 327-329. (in Chinese))
    [12] GRADY D E, KIPP M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 17(3): 147-157.
    [13] KYOYA T, ICHIKAWA Y, KAWAMOTO T. A damage mechanics theory for discontinuous rock mass[C]// Proc of the 5 th International Conference on Numerical Methods in Geomechanics. Nagoya, 1985: 469-480.
    [14] KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory[J]. International Journal of Numerical Analysis Method in Geomechanics, 1988, 12: 1-30.
    [15] SWOBODA G, YANG Q. An energy-based damage model of geomaterials-Ⅰ, formulation and numerical results[J]. International Journal of Solids and Structures, 1999, 36: 1719-1734.
    [16] LI N, CHEN W, ZHANG P. The mechanical properties and a fatigue-damage model for jointed rock mass subjected to dynamic cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38: 1071-1079.
    [17] 楼志文. 损伤力学基础[M]. 西安: 西安交通大学出版社,1991. (LOU Zhi-wen. Fundamental of damage mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 1991. (in Chinese))
    [18] 刘小明, 李焯芬. 脆性岩石损伤力学分析与岩爆损伤能量指数[J]. 岩石力学与工程学报, 1997, 16(2): 140-147. (LIU Xiao-ming, LI Zuo-fen. Damage mechanics analysis for brittle rock and rockburst energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(2): 140-147. (in Chinese))
    [19] HUANG C, SUBHASH G, VITTON S J. A dynamic damage growth model for uniaxial compressive response of rock aggregates[J]. Mechanics of Materials, 2002, 34(5): 267-277.
    [20] HUANG C, SUBHASH G. Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(6): 1089-1105
    [21] PALIWAL B, RAMESH K T. An interacting micro-crack damage model for failure of brittle materials under compression[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(3): 896-923.
    [22] LEE S, RAVICHANDRAN G. Crack initiation in brittle solids under multiaxial compression[J]. Engineering Fracture Mechanics, 2003, 70(13): 1645-1658.
    [23] 晏石林, 黄玉盈, 陈传尧. 非贯通节理岩体等效模型与弹性参数确定[J]. 华中科技大学学报, 2001, 29(6): 64-67. (YAN Shi-lin, HUANG Yu-ying, CHEN Chuan-yao. An equivalent model for jointed rock mass with planar nonpenetrative joint and its elastic parameters[J]. Journal of Huangzhong Univeristiy of Science & Technology, 2001, 29(6): 64-67. (in Chinese))
    [24] 孙卫军, 周维垣. 裂隙岩体弹塑性-损伤本构模型[J]. 岩石力学与工程学报, 1990, 2(9): 108-119. (SUN Wei-jun, ZHOU Wei-yuan. An elasto-plastic damage mechanics constitutive model for jointed rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 1990, 2(9): 108-119. (in Chinese))
    [25] KUMAR A. The effect of stress rate and temperature on the strength of basalt and granite[J]. Geophysics, 1968, 33(3): 501-510.
    [26] WANG T T, HUANG T H. A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46: 521-530.
    [27] 陈 新, 廖志红, 李德建. 节理倾角及连通率对岩体强度,变形影响的单轴压缩试验研究[J]. 岩石力学与工程学报, 2011, 30(4): 781-789. (CHEN Xin, LIAO Zhi-hong, LI De-jian. Experimental study of effects of joint inclination angle and connectivity rate on strength and deformation properties of rock masses under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 781-789. (in Chinese))
    [28] JAEGER J, COOK N. Fundamentals of rock mechanics[M]. London: Chapman and Hall L TD, 1969: 100-105.
  • 期刊类型引用(2)

    1. 许成顺,韩润波,杜修力,许紫刚. 考虑土-结构相互作用的弹簧-地下结构体系静力推覆试验技术及其试验研究. 建筑结构学报. 2023(01): 248-258 . 百度学术
    2. 卢钦武,关振长,林林,吴淑婧,宋德杰. 基于静力推覆试验的山岭隧道衬砌-地层相互作用机制研究. 岩土力学. 2023(08): 2318-2326 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  455
  • HTML全文浏览量:  1
  • PDF下载量:  621
  • 被引次数: 2
出版历程
  • 收稿日期:  2014-11-03
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回