• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和砂土中浅埋单药包爆炸液化特性分析

王维国, 陈育民, 张意江, 陈晨伟

王维国, 陈育民, 张意江, 陈晨伟. 饱和砂土中浅埋单药包爆炸液化特性分析[J]. 岩土工程学报, 2016, 38(2): 355-361. DOI: 10.11779/CJGE201602021
引用本文: 王维国, 陈育民, 张意江, 陈晨伟. 饱和砂土中浅埋单药包爆炸液化特性分析[J]. 岩土工程学报, 2016, 38(2): 355-361. DOI: 10.11779/CJGE201602021
WANG Wei-guo, CHEN Yu-min, ZHANG Yi-jiang, CHEN Chen-wei. Characteristics of liquefaction induced by single shallow-buried detonation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 355-361. DOI: 10.11779/CJGE201602021
Citation: WANG Wei-guo, CHEN Yu-min, ZHANG Yi-jiang, CHEN Chen-wei. Characteristics of liquefaction induced by single shallow-buried detonation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 355-361. DOI: 10.11779/CJGE201602021

饱和砂土中浅埋单药包爆炸液化特性分析  English Version

基金项目: 国家自然科学基金面上项目(51379067); 长江学者创新团; 队发展计划资助项目(IRT1125)
详细信息
    作者简介:

    王维国(1986- ),博士研究生,目前主要从事土体爆炸动力响应及振动液化方面的研究。E-mail: 2008hmily@163.com。

Characteristics of liquefaction induced by single shallow-buried detonation in saturated sand

  • 摘要: 堰塞坝和挡水堤坝的爆破泄洪均可能涉及饱和土中的浅埋爆炸问题,然而关于饱和土中浅埋炸药爆炸引起的动态孔隙水压力及液化的研究则鲜有报道。基于饱和砂土中的浅埋单药包爆炸液化现场试验,分析了浅埋爆炸引起的土中超孔隙水压力变化特征,研究了药量、埋深和爆距等因素对土中超孔隙水压力上升的影响。在评价饱和砂土中封闭爆炸液化经验预测方法的基础上,提出了考虑药包埋深和比例距离的修正的液化预测经验模型,并与金银岛爆炸液化试验数据进行对比验证。研究结果表明,修正后的液化预测经验模型可以描述比例埋深对爆后孔隙水压力上升的影响,可以较为精确地评价和预测浅埋单药包爆炸引起的饱和土中液化的发生程度及范围。研究成果可以作为饱和土中封闭爆炸液化经验预测方法的补充和完善。
    Abstract: The practical problems of blasting landslide dams or water retaining dams may involve a subject of shallow-buried explosions in saturated soils. However, the studies on dynamic pore water pressure and liquefaction induced by a single shallow-buried detonation are rarely found in open technical literatures. A series of single shallow-buried detonation field tests in saturated sand are conducted to study the characteristics of the excess pore water pressure and the influences of charge mass, buried depth and distance on the generation of pore water pressure. Then the empirical prediction methods based on fully-contained detonations are evaluated. And a modified empirical model with respect to scaled distance and scaled buried depth is proposed to predict the excess pore water pressure or liquefaction based upon the evaluations. A group of experimental data from Treasure Island liquefaction tests are used to validate the modified empirical model. The results show that the modified empirical model can describe the buried depth on the generation of pore water pressure. Meanwhile, it can be utilized to accurately evaluate and predict the liquefaction degree or range. The results can be used as a supplement and improvement to the empirical methods for predicting the liquefaction produced by fully-contained detonations in saturated soils.
  • [1] MARCUSON W F. Definition of terms related to liquefaction[J]. Journal of the Geotechnical Engineering, 1978, 104(9): 1197-1200.
    [2] 钱七虎, 王明洋. 岩土中的冲击爆炸效应[M]. 北京: 国防工业出版社, 2010. (QIAN Qi-hu, WANG Ming-yang. Impact and explosion effects in rock and soil[M]. Beijing: National Defence Industry Press, 2010. (in Chinese))
    [3] CHARLIE W A. Review of present practices used in predicting the effects of blasting on pore pressure[R]. Denver Colorado: U. S. Department of the Interior, 1985.
    [4] 王明洋, 钱七虎. 爆炸波作用下准饱和土的动力模型研究[J]. 岩土工程学报, 1995, 17(6): 103-110. (WANG Min-yang, QIAN Qi-hu. Study on dynamic model for quasi-saturated soil under explosive wave[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 103-110. (in Chinese))
    [5] 王明洋, 国胜兵, 赵跃堂, 等. 饱和砂土动力液化研究进展[J]. 解放军理工大学学报(自然科学版), 2002, 3(1): 13-18. (WANG Min-yang, GUO Sheng-bing, ZHAO Yue-tang, et al. Progression of liquefaction investigation for saturated sand soil under dynamic loading[J]. Journal of PLA University of Science and Technology, 2002, 3(1): 13-18. (in Chinese))
    [6] KUMMENEIE O, EIDE O. Investigation of loose sand deposits by blasting[C]// Proceeding of the 5th International Conference on Soil Mechanics and Foundation Engineering. Paris, 1961: 491-497.
    [7] STUDER J, KOK L. Blast-induced excess porewater pressure and liquefaction experience and application[C]// International Symposium on Soil under Cyclic and Transient Loading. Swansea, 1980.
    [8] AL-QASIMI E M A, CHARLIE W A, WOELLER D J. Canadian liquefaction experiment (CANLEX): Blast induced ground motion and pore pressure experiments[J]. Geotechnical Testing Journal, 2005, 28(1): 1-13.
    [9] CHARLIE W A, DOEHRING D O. Groundwater table mounding, pore pressure, and liquefaction induced by explosions: Energy-distance relations[J]. Reviews of Geophysics, 2007, 45(4): 1-9.
    [10] CHARLIE W A, BRETZ T E, SCHURE L A, et al. Blast-induced pore pressure and liquefaction of saturated sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1308-1319.
    [11] ELLER J M. Predicting pore pressure response in in-situ liquefaction studies using controlled blasting[D]. Oregon: Oregon State University, 2011.
    [12] LEONG E C, ANAND S, CHEONG H K, et al. Re-examination of peak stress and scaled distance due to ground shock[J]. International Journal of Impact Engineering, 2007, 34: 1487-1499.
    [13] PATHJRAGE K S. Critical assessment of the CANLEX blast experiment to facilitate a development of an in-situ liquefaction methodology using explosives[D]. Vancouver: The University of British Columbia, 2000.
    [14] 穆朝民, 任辉启, 李永池, 等. 变埋深条件下饱和土爆炸能量耦合系数的试验研究[J]. 岩土力学, 2010, 31(5): 1574-1578. (MU Chao-min, REN Hui-qi, LI Yong-chi, et al. Experiment study of explosion energy coupling coefficient with different burial depths in saturated soils[J]. Rock and Soil Mechanics, 2010, 31(5): 1574-1578. (in Chinese))
    [15] KULHAWY F H, MAYNE P W. Manual on estimating soil properties for foundation design[R]. California: Electric Power Research Institute, EPRI-EL-6800, 1990.
    [16] WANG P, XEI X A, HE W D. Preparation and performance of a novel water gel explosive containing expired propellant grains[J]. Central European Journal of Energetic Materials, 2013, 10(4): 495-507.
    [17] ROLLINS K M, LANE J D, DIBB E, et al. Pore pressure measurement in blast-induced liquefaction experiments[J]. Journal of the Transportainon Research Board, 2005(1936): 210-220.
    [18] ASHFORD S A, ROLLINS K M, LANE J D. Blast-induced liquefaction for full-scale foundation testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 798-806.
  • 期刊类型引用(5)

    1. 窦杰,向子林,许强,郑鹏麟,王协康,苏爱军,刘军旗,罗万祺. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学. 2023(05): 1657-1674 . 百度学术
    2. 姚未来,刘元雪,陈进,程香. 新工科背景下岩土工程学科研究生培养科研支架式教学模式构建. 高等建筑教育. 2022(02): 66-76 . 百度学术
    3. 董亮,阚新生,邓国如,徐杰,袁慧. 短期电力负荷预测的时间序列数据深度挖掘模型设计. 能源与环保. 2021(06): 207-212 . 百度学术
    4. 刘元雪,姚未来,陈进,郑颖人. 建构“创新”基因, 改革岩土塑性力学研究生教材. 高等工程教育研究. 2021(05): 100-105 . 百度学术
    5. 刘洋,于鹏强,张铎,王肖肖. 一个基于微观力学分析的散粒体应力–剪胀关系. 岩土工程学报. 2021(10): 1816-1824 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 7
出版历程
  • 收稿日期:  2015-03-15
  • 发布日期:  2016-02-24

目录

    /

    返回文章
    返回