• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

液化地基中群桩基础地震响应分析

刘星, 王睿, 张建民

刘星, 王睿, 张建民. 液化地基中群桩基础地震响应分析[J]. 岩土工程学报, 2015, 37(12): 2326-2331. DOI: 10.11779/CJGE201512025
引用本文: 刘星, 王睿, 张建民. 液化地基中群桩基础地震响应分析[J]. 岩土工程学报, 2015, 37(12): 2326-2331. DOI: 10.11779/CJGE201512025
LIU Xing, WANG Rui, ZHANG Jian-min. Seismic response analysis of pile groups in liquefiable foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2326-2331. DOI: 10.11779/CJGE201512025
Citation: LIU Xing, WANG Rui, ZHANG Jian-min. Seismic response analysis of pile groups in liquefiable foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2326-2331. DOI: 10.11779/CJGE201512025

液化地基中群桩基础地震响应分析  English Version

基金项目: 国家自然科学基金项目(51038007,51079074)
详细信息
    作者简介:

    刘 星(1989- ),男,博士研究生,研究方向为可液化地基群桩基础抗震分析。E-mail: liuxing083@gmail.com。

Seismic response analysis of pile groups in liquefiable foundations

  • 摘要: 可液化地基中桩基础地震响应分析一直是岩土工程抗震研究的热点和难点。针对这一问题,采用砂土液化大变形统一本构模型来描述可液化地基土体的应力应变关系,建立了一个3×5的群桩三维计算模型,采用三维弹塑性有限元动力时程分析,将地基、群桩基础和上部结构作为一个系统研究群桩基础的地震动响应规律,重点关注桩与土的运动相互作用以及水平方向的弯矩在地震荷载作用下的分配情况。结果表明可液化地基中桩基础的弯矩受桩与土运动相互作用影响显著;不同桩的弯矩最大值不同,角桩最大,边桩次之,中心桩最小;弯矩最大值出现的位置不相同,角桩和边桩弯矩最大值出现在上部非液化层与液化层界面处,中心桩弯矩最大值出现在桩头处。
    Abstract: The seismic analysis of pile foundations in liquefiable ground is an important subject in geotechnical earthquake engineering. A computational model of a 3×5 pile group is established in OpenSees FEM program, and considering soil foundations, the pile group and the upper structure as a system, a unified plastic constitutive model for large post-liquefaction deformation of sand is employed. Special attention is given to the kinematic interaction between piles and soil and distribution of the moment in pile groups. The results show that the soil-pile kinematic interaction has a significant influence on the moment of piles in liquefiable ground. The moment distribution in pile groups indicates that the maximum moment of the corner piles is the largest, and that of the central piles is the smallest. The positions of the maximum moment of different piles are different. The maximum moments in the corner piles and the edge piles are at the interface between the upper layer and the liquefied layer, but the maximum moment in the central piles is at the pile top.
  • [1] HAMADA M. Large ground deformations and their effects on lifelines: 1964 Niigata Earthquake[R]. New York: National Centre for Earthquake Engineering Research, 1992.
    [2] FAN K, GAZETAS G, KAYNIA A, et al. Kinematic seismic response of single piles and pile groups[J]. Journal of Geotechnical Engineering, 1991, 117(12): 1860-1879.
    [3] GAZETAS G, FAN K, KAYNIA A. Dynamic response of pile groups with different configurations[J]. Soil dynamics and Earthquake Engineering, 1993, 12(4): 239-257.
    [4] GAZETAS G, FAN K, TAZOH T, et al. Seismic Pile-Group- Structure Interaction [J]. In Piles under Dynamic Loads, ASCE, 1992: 56-93.
    [5] WU G X, FINN W D L. Dynamic nonlinear analysis of pile foundations using finite element method in the time domain[J]. Canadian Geotechnical Journal, 1997, 34(1): 44-52.
    [6] WU G X, FINN WDL. Dynamic elastic analysis of pile foundations using finite element method in the frequency domain[J]. Canadian Geotechnical Journal, 1997, 34(1): 34-43.
    [7] 李荣建, 于玉贞, 李广信. 抗滑桩加固非饱和土边坡三维稳定性分析[J]. 岩土力学, 2008, 29(4): 968-972. (LI Rong-jian, YU Yu-zhen, LI Guang-xing. 3D global stability analysis of unsaturated soil slope reinforced with piles[J]. Rock and Soil Mechanics, 2008, 29(4): 968-972. (in Chinese))
    [8] YANG Z H, JEREMIĆ B. Numerical study of group effects for pile groups in sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(15): 1255-1276.
    [9] MCCLELLAND B, FOCHT J A. Soil modulus for laterally loaded piles[J]. Transactions of ASCE, 1956, 82: 1-22.
    [10] REESE L C, MATLOCK H. Non-dimensional solutions for laterally-loaded piles with soil modulus assumed proportional to depth[C]// 8 th Texas conf on Soil Mech and Foundation Engrg. Texas, 1956.
    [11] American Petroleum Institute (API). Recommended practice or planning, designing, and constructing fixed offshore platforms-working stress design[S]. API Recommended Practice, 2A (WSD). 2000.
    [12] Architectural Institute of Japan (AIJ). Recommendations for design of building foundations[S]. Tokyo, 2001.
    [13] JGJ 94—2008 建筑桩基技术规范[S]. (JGJ 94—2008, Technical code for building pile foundations[S]. 2008. (in Chinese))
    [14] ZHANG J M. Cyclic critical stress state theory of sand with its application to geotechnical problems[R]. Tokyo: Research Report of Tokyo Institute of Technology, 1997.
    [15] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17. (ZHANG Jian-min. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 12-17. (in Chinese))
    [16] 王 刚, 张建民. 砂土液化大变形的弹塑性循环本构模型[J]. 岩土工程学报, 2007, 29(1): 51-59. (WANG Gang, ZHANG Jian-min. A cyclic elasto-plastic constitutive model for evaluation of large post-liquefaction deformation of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 51-59. (in Chinese))
    [17] ZHANG J M, WANG G. Large post-liquefaction deformation of sand, part I: physical mechanism, constitutive description and numerical algorithm[J]. Acta Geotechnica, 2012, 7(2): 69-113.
    [18] DAFALIAS Y F, POPOV E P. A model of nonlinearly hardening materials for complex loading[J]. Acta Mechanica, 1975, 21(3): 173-192.
    [19] 王 睿, 张建民, 王 刚. 砂土液化大变形本构模型的三维化及其数值实现[J]. 地震工程学报, 2013, 35(1): 91-97. (WANG Rui, ZHANG Jian-min, WANG Gang. Multiaxial formulation and numerical implementation of a constitutive model for the evaluation of large liquefaction-induced deformation[J]. China Earthquake Engineering Journal, 2013, 35(1): 91-97. (in Chinese))
    [20] WANG R, ZHANG J M, WANG G. A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics, 2014, 59: 54-66.
    [21] CLOUGH G, DUNCAN J. Finite element analyses of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1673.
    [22] SEED H B, LEE K L. Liquefaction of saturated sands during cyclic loading[J]. Journal of Soil Mechanics and Foundation Engineering Division, ASCE, 1966, 92(SM6): 105-134.
  • 期刊类型引用(19)

    1. 杜岩,张洪达,谢谟文,蒋宇静,张明,贾北凝. 矿山采空区边坡动态稳定性评价方法. 工程科学学报. 2025(02): 215-223 . 百度学术
    2. 潘网生,马宗源,傅良同. 贵州三叠纪垄头组软岩优势结构面研究意义和进展. 绿色科技. 2024(06): 236-240 . 百度学术
    3. 陶通铭. 采动作用下岩质斜坡变形破坏机制研究——以贵州龙场崩塌为例. 中国水运(下半月). 2024(11): 113-114+145 . 百度学术
    4. 陶通铭. 采动作用下岩质斜坡变形破坏机制研究——以贵州龙场崩塌为例. 中国水运. 2024(22): 113-114+145 . 百度学术
    5. 梁博,杨更社,冯伟,潘振兴,孙杰龙,刘慧,陈奇. 冻融诱发平面滑移型岩质边坡失稳模型试验研究. 西安科技大学学报. 2024(06): 1118-1126 . 百度学术
    6. 于群群,孙朝燚. 顺层岩质边坡滑剪破坏规律研究. 河南城建学院学报. 2023(01): 15-21 . 百度学术
    7. 杨忠平,向宫固,赵茜,刘新荣,赵亚龙. 水动力-溶蚀作用下灰岩结构面剪切力学特性. 岩土工程学报. 2023(08): 1555-1563 . 本站查看
    8. 李华. 基于无人机航摄三维模型的地质信息提取和数值模拟应用. 中国水运(下半月). 2023(09): 31-33 . 百度学术
    9. 牛犇,冯春,丛俊余,孙子正,张一鸣. 基于CDEM颗粒流的三维高速远程滑坡成灾范围分析. 岩石力学与工程学报. 2023(S2): 4018-4027 . 百度学术
    10. 杨小龙,王刚. 滑坡堆积体反粒序现象的离散元数值分析. 工程地质学报. 2023(06): 1941-1950 . 百度学术
    11. 李华. 基于无人机航摄三维模型的地质信息提取和数值模拟应用. 中国水运. 2023(18): 31-33 . 百度学术
    12. 穆成林,裴向军,王睿,王超. 基于物理模型试验的含多层软弱夹层顺层开挖高边坡变形破坏特征分析. 中国地质灾害与防治学报. 2022(03): 61-67 . 百度学术
    13. 朱彦鹏,杜一博,杨校辉,张卫雄,朱鋆川. 甘肃舟曲河那滑坡变形特征及孕灾机理. 科学技术与工程. 2022(25): 10884-10895 . 百度学术
    14. 朱赛楠,殷跃平,王猛,朱茂,王晨辉,王文沛,李俊峰,赵慧. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究——以金沙江色拉滑坡为例. 岩土工程学报. 2021(04): 688-697 . 本站查看
    15. 易连兴,李瑜. 岩溶及水动力对鸡尾山滑坡影响作用研究. 工程地质学报. 2021(03): 583-592 . 百度学术
    16. 刘宁波,钟立力,龙森. 山区公路单斜坡回头曲线路段滑坡成因及治理方案研究. 路基工程. 2020(03): 190-195 . 百度学术
    17. 李巧学,周洪福,冉涛,铁永波. 中倾侧向坡中一种岩体破坏过程的模拟研究. 路基工程. 2020(04): 62-65+72 . 百度学术
    18. 崔芳鹏,李滨,杨忠平,吴乐乐,李宁,彭健全. 贵州纳雍普洒滑坡动力触发机制离散元模拟分析. 中国岩溶. 2020(04): 524-534 . 百度学术
    19. 何忠明,杨煜,曾新发,刘森峙. 土洞演化过程中路基变形的响应分析. 中南大学学报(自然科学版). 2018(12): 3068-3076 . 百度学术

    其他类型引用(28)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 47
出版历程
  • 收稿日期:  2014-08-19
  • 发布日期:  2015-12-19

目录

    /

    返回文章
    返回