• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

循环荷载作用下饱和砂砾土的破坏机理与动强度

陈国兴, 孙田, 王炳辉, 李小军

陈国兴, 孙田, 王炳辉, 李小军. 循环荷载作用下饱和砂砾土的破坏机理与动强度[J]. 岩土工程学报, 2015, 37(12): 2140-2148. DOI: 10.11779/CJGE201512002
引用本文: 陈国兴, 孙田, 王炳辉, 李小军. 循环荷载作用下饱和砂砾土的破坏机理与动强度[J]. 岩土工程学报, 2015, 37(12): 2140-2148. DOI: 10.11779/CJGE201512002
CHEN Guo-xing, SUN Tian, WANG Bing-hui, LI Xiao-jun. Undrained cyclic failure mechanisms and resistance of saturated sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2140-2148. DOI: 10.11779/CJGE201512002
Citation: CHEN Guo-xing, SUN Tian, WANG Bing-hui, LI Xiao-jun. Undrained cyclic failure mechanisms and resistance of saturated sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2140-2148. DOI: 10.11779/CJGE201512002

循环荷载作用下饱和砂砾土的破坏机理与动强度  English Version

基金项目: 国家自然科学基金项目(41172258,51438004); 国家科技
详细信息
    作者简介:

    陈国兴(1963- ),男,博士,教授,主要从事土动力学与岩土地震工程研究。E-mail: gxc6307@163.com。

Undrained cyclic failure mechanisms and resistance of saturated sand-gravel mixtures

  • 摘要: 不同研究者对砂砾土动强度影响因素的认识存在相互冲突之处。针对含砾量、相对密度、初始有效固结应力和固结比4个主要因素,对10组不同含砾量的饱和砂砾土开展了系列循环三轴试验,提出了砂砾土破坏评价准则;引入二元聚集模型,研究了饱和砂砾土的不排水动力特性及其动强度的量化方法。研究结果表明:不同试验条件下砂砾土存在两类破坏机理,即均等固结条件下表现为达到零有效应力状态的循环液化,非均等固结条件下表现为过大累积轴向变形的循环失效;引入砂砾土骨架结构孔隙比概念,砂砾土动强度CRR随砂砾土骨架结构孔隙比的增大而降低,且其降低趋势呈良好的指数函数关系。
    Abstract: There are conflicting versions of influences of different factors on cyclic resistance of sand-gravel mixtures. Considering four main factors, gravel content, effective lateral confining stress, relative density and consolidation stress ratio, a series of cyclic triaxial tests were performed on the sand-gravel mixtures with 10 groups of gravel contents. The test results and findings are summarized as follows: (1) There are two failure mechanisms of the sand-gravel mixtures under different test conditions, i.e., cyclic liquefaction and cyclic failure; (2) The excess pore pressure of a 100% and the accumulated axial strain of a 5% are adopted as the criterion for the cyclic liquefaction and the cyclic failure of the specimens, respectively; (3) An index of the sand-gravel skeleton void ratio () is employed to represent the packing condition of skeleton particles and filler particles in the sand-gravel mixtures; (4) The mean correlation representing the exponential relationship between the cyclic resistance ratio (CRR) causing cyclic liquefaction or cyclic failure at the presupposed number of cycles and the of sand-gravel mixtures is derived.
  • [1] ISHIHARA K. Stability of natural deposits during Earthquakes[C]// Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985.
    [2] HATANAKA M, UCHIDA A, OHARA J. Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-Ken Nanbu Earthquake[J]. Soils and Foundations, 1997, 37(3): 107-115
    [3] ELGAMALl A W, ZEGHAL M, PARRA E. Liquefaction of reclaimed island in Kobe, Japan[J]. Journal of Geotechnical Engineering, 1996, 122(1): 39-49.
    [4] TANAKA Y. The 1995 Great Hanshin Earthquake and liquefaction damages at reclaimed lands in Kobe Port[J]. International Journal of Offshore and Polar Engineering, 2000, 10(1): 64-72.
    [5] COULTER H W, MIALIACCIO R R. Effects of the Earthquake of March 27,1964 at Valdez, Alaska[R]. Geological Survey Professional Papers 542-C, US Department of the Interior, 1966.
    [6] YEGIAN M K, GHAHRAMAN V G, HARUTIUNYAN R N.. Liquefaction and embankment failure case histories, 1988 Armenia earthquake[J]. Journal of Geotechnical Engineering, 1994, 120(3): 581-596.
    [7] WANG W S. Earthquake damages to earth dams and levees in relation to soil liquefaction and weakness in sofe clays[C]// Proc of the International Conference on Case Histories in Geotechnical. 1984: 511-521.
    [8] 清华设计组. 白河主坝地震滑坡的震害分析及抗震加固[J].清华大学学报(自然科学版), 1979, 19(2): 18-34. (Qinghua Design Dection. An analysis of the damage of slope sliding by earthquake of the Paiho main dam and its earthquake resistant strengthening[J]. Journal of Tsinghua University (Science and Technology), 1979, 19(2): 18-34. (in Chinese))
    [9] CAO Z Z, YOUD T L, YUAN X M. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, M s ¼8.0 [J]. Soil Dynamics and Earthquake Engineering, 2011(31): 1132-1143.
    [10] HAGA K. Skaking table tests for liquefaction of gravel-containing sand[D]. Tokyo: University of Tokyo, Department of Civil Engineering, 1984. (in Japanese)
    [11] KOKUSHO T, TNANAKA Y. Dynamic properties of gravel layers investigated by in-situ freezing sampling[J]. Ground Failure under Seismic Conditions, Geotech Spec Pub ASCE, 1994, 44: 121-140.
    [12] HATANAKA M, UCHIDA A, OH-OKA H. Correlation between the liquefaction strengths of saturated sands obtained by in-situ freezing method and rotary-type triple tube method[J]. Soils and Foundations, 1995, 35(2): 67-75.
    [13] EVANS M D, ZHOU S P. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
    [14] AMINI F, SAMA K M. Behavior of stratified sand-silt-gravel composite under cycle liquefaction conditions[J]. Soil Dynamics and Earthquake Engineering, 1999, 18(6): 445-455.
    [15] TADASHI H, TAKAJI K, RYOUSUKE H. Undrained strength of gravelly soils with different particle gradations[C]// Proceeding of 13 th World Conference on Earthquake Engineering. Vancouver, 2004.
    [16] GHIONNA V N, PORCINO D. Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cycle triaxial tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 194-202.
    [17] XENAKI V C, ATHANASOPOULOS G A. Dynamic and liquefaction resistance of two soil materials in an eathfill dam-laboratory test results[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(8): 605-620.
    [18] CHANG W J, CHANG C W, ZENG J K. Liquefaction characteristics of gap-graded gravelly soils in K 0 condition[J]. Soil Dynamics and Earthquake Engineering, 2014, 56: 74-85.
    [19] POLITO C P, MARTIN J R. Effects of non-plastic fines on the liquefaction resistance of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 408-415.
    [20] TRONCOSO J H, VERDUGO R. Silt content and dynamic behavior of tailing sands[C]// Proceedings of the 12th international conference on soil mechanics and foundation engineering. San Francisco, 1985: 1311-1314.
    [21] SHEN C K, VRYMOED J L, UYENO C K. The effects of fines on liquefaction of sands[C]// Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo, 1977: 381-385.
    [22] VAID V P. Liquefaction of silty soils[C]// Ground Failures Under Seismic Conditions, Geotechnical Special Publication. New York, 1994: 1-16.
    [23] 孙 田, 陈国兴, 朱定华. 空心圆柱扭剪仪的改进及应用[J]. 南京工业大学学报(自然科学版), 2014, 36(1): 53-59. (SUN Tian, CHEN Guo-xing, ZHU Ding-hua. Improvements and application of hollow cylinder torsional shear apparatus[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2014, 36(1): 53-59. (in Chinese))
    [24] KODAKA T, CUI Y, MORI S, et al. Soil structure in gravel-mixed sand specimen and its influence on mechanical behavior[C]// Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, 2013: 369-372.
    [25] KOKUSHO T. Correlation of pore-pressure B-value with P-wave velocity and Poisson's ratio for imperfectly saturated sand or gravel[J]. Soils and Foundations, 2000, 40(4): 95-102.
    [26] 张克绪. 饱和砂土液化应力条件[J]. 地震工程与工程振动, 1984, 4(1): 99-109. (ZHANG Ke-xu. Stress condition inducing liquefaction of saturated sand[J]. Earthquake Engineering and Engineering Vibration, 1984, 4(1): 99-109. (in Chinese))
    [27] SEED H B, LEE K L. Liquefaction of saturated sand during cyclic loading[J]. Journal of the Soil Mechanics and Foundation Division, 1966(6): 105-134.
    [28] ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43: 351-415.
    [29] TANAKA Y, KUDO K, YOSHIDAY, et al. Undrained cyclic strength of gravelly soil and its evaluation by penetration resistance and shear modulus[J]. Soils and Foundations, 1992, 32: 128-142.
    [30] EVANS M D, SEED H B, SEED R B. Membrane compliance and liquefaction of sluiced gravel specimens[J]. Journal of Geotechnical Engineering, 1992, 118: 856-872.
    [31] HARA T, KOKUSHO T, HIRAOKA R. Undrained strength of gravelly soils with different particle gradations[C]// 13th World Conference on Earthquake Engineering. Vancouver B C, 2004.
    [32] SUZUKI Y, HATANAKA M, ISHIHARA K et al. Engineering properties of undisturbed gravel sample[C]// Earthquake Engineering, 10th World conference. Rotterdam, 1992.
    [33] LIN P S, CHANG C W, CHANG W J. Characterization of liquefaction resistance in gravelly soil: large hammer penetration test and shear wave velocity approach[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(9/10): 675-687.
    [34] National Research Council NRC. Liquefaction of soils during earthquakes[M]. Washington D C: National Academy Press, 1985.
  • 期刊类型引用(12)

    1. 何长江. 基于最小势能原理的深基坑吊脚墙变形研究. 江西建材. 2024(02): 71-73 . 百度学术
    2. 金国龙,张永来,李鸿桥. 地下连续墙新型刚性接头设计与研究. 建筑施工. 2024(05): 629-631 . 百度学术
    3. 罗会东,周佳奇,冯志军,叶涛,薛高升,周腾龙,曹安乐. 地下连续墙刚性排插接头技术研究. 施工技术(中英文). 2024(16): 33-38 . 百度学术
    4. 夏欢,曾旭涛,付金磊,朱俊涛,屈成. 超深异型排插式刚性接头地连墙工艺试验研究. 地下空间与工程学报. 2024(06): 2020-2033 . 百度学术
    5. 陈亮,颜书法,万昱. 跨孔电法探测地下连续墙渗漏隐患的应用研究. 岩土工程学报. 2023(08): 1605-1614 . 本站查看
    6. 姚云龙,刘鑫,古剑,王智健,倪嘉辉. 地下连续墙钢箱接头力学性能研究. 三峡大学学报(自然科学版). 2022(04): 57-63 . 百度学术
    7. 陈平,黄海涛,安刚建,周雄好,罗支贵,蔡虹,袁正璞. 软弱地层深大基坑富水特性及组合支护控制. 科学技术与工程. 2022(15): 6278-6290 . 百度学术
    8. 汪洵. 地下连续墙在含水地层基坑开挖中的应用研究. 地下水. 2022(06): 40-42 . 百度学术
    9. 田德胜. 分节预制地下连续墙围护结构加固施工技术. 粉煤灰综合利用. 2022(05): 22-28 . 百度学术
    10. 罗震刚,周晨,王晶,陈伟,马栋魁,沈才华. 地连墙兼作水池壁板的接头质量控制参数及厚度优化研究. 河南科学. 2020(05): 749-754 . 百度学术
    11. 刘颖,相斌辉,扶名福. 沿海地区复杂地质条件下三角形深大基坑变形实测分析与数值模拟研究. 水资源与水工程学报. 2020(05): 207-212+217 . 百度学术
    12. 杜昌隆,赵强,薛洪松. 洞内狭小空间中地下连续墙施工关键技术. 市政技术. 2020(06): 187-190+194 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  476
  • HTML全文浏览量:  2
  • PDF下载量:  392
  • 被引次数: 28
出版历程
  • 收稿日期:  2014-10-10
  • 发布日期:  2015-12-19

目录

    /

    返回文章
    返回