• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂砾土抗液化强度的小型土箱振动台试验研究

王炳辉, 陈国兴, 孙田, 李小军

王炳辉, 陈国兴, 孙田, 李小军. 砂砾土抗液化强度的小型土箱振动台试验研究[J]. 岩土工程学报, 2015, 37(11): 2094-2100. DOI: 10.11779/CJGE201511022
引用本文: 王炳辉, 陈国兴, 孙田, 李小军. 砂砾土抗液化强度的小型土箱振动台试验研究[J]. 岩土工程学报, 2015, 37(11): 2094-2100. DOI: 10.11779/CJGE201511022
WANG Bing-hui, CHEN Guo-xing, SUN Tian, LI Xiao-jun. Liquefaction resistance of sand-gravel soils using small soil-box shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2094-2100. DOI: 10.11779/CJGE201511022
Citation: WANG Bing-hui, CHEN Guo-xing, SUN Tian, LI Xiao-jun. Liquefaction resistance of sand-gravel soils using small soil-box shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2094-2100. DOI: 10.11779/CJGE201511022

砂砾土抗液化强度的小型土箱振动台试验研究  English Version

基金项目: 国家自然科学基金项目(41172258); 国家重点基础研究发展计划(“973”计划)项目(2011CB013601); 国家科技重大专项项目(2011ZX06002-010-15); 国家自然科学青年基金项目(51309121); 江苏省基础研究计划青年基金项目(SBK20130463)
详细信息
    作者简介:

    王炳辉(1980- ),男,浙江新昌人,博士后,从事土动力学研究。E-mail: wbhchina@126.com。

Liquefaction resistance of sand-gravel soils using small soil-box shaking table tests

  • 摘要: 近来数次大地震中出现大量的砂砾土液化震害,饱和砂砾土的地震液化问题越来越引起重视。针对砂砾土的抗液化强度问题,开展了4种砾含量、3种相对密度情况下,饱和砂砾土的小型土箱振动台试验研究。为获得较为合理的抗液化强度结果修正了由加速度计倾斜产生的加速度时程漂移,并描述了土体中加速度和动孔压发展特性。饱和砂砾土的抗液化强度结果显示:含砾量和相对密度对饱和砂砾土的抗液化强度均有明显影响。饱和砂砾土的抗液化强度随着含砾量和相对密度的增加明显增大,增大的趋势越来越明显,且明显高于相近相对密度的饱和砂土的抗液化强度。
    Abstract: Due to many cases of the liquefaction of sand-gravel soils induced by recent earthquakes, more and more attention is paid to the liquefaction of sand-gravel soils. Aiming at this problem, the small soil-box shaking table tests are performed using saturated sand-gravel soils with 4 kinds of gravel contents and 3 kinds of relative densities. In the process of analysis, firstly, the acceleration drift caused by the tilt of acceleration sensor is amended in order to obtain the rational results, and then the characteristics of the accelerations and dynamic pore water pressures (DPWP) are described. The results of the liquefaction resistance of the sand-gravel soil show that the gravel content and the relative density of the soil have obvious effects on the liquefaction resistance of sand-gravel soils. The more the gravel content and relative density, the greater the liquefaction resistances of the soils, and the greater the variances of liquefaction resistance. For similar relative density, the liquefaction resistances of saturated sand-gravel soils are obviously greater than those of saturated sand.
  • [1] MUNENORI H, AKIHIKO U, JUNRYO O. Liquefaction characteristics of a gravelly fill liquefied during the 1995 hyogo-ken nanbu earthquake[J]. Journal of the Japanese Geotechnical Society, Soils and Foundation, 1997, 37(3): 107-115.
    [2] CHU B L, HSU S C, CHANG Y M. Ground be haviror and liquefaction analysis in central Taiwan-Wufeng[J]. Engineering Geology, 2004, 71(1/2): 119-139.
    [3] CAO Z, HOU L, XU H, et al. Distribution and characteristics of gravelly soil liquefaction in the Wenchuan Ms 8.0 earthquake[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(2): 167-175.
    [4] 曹振中, 袁晓铭, 陈龙伟, 等.汶川大地震液化宏观现象概述[J]. 岩土工程学报, 2010, 32(4): 643-650. (CAO Zhen-zhong, YUAN Xiao-ming, CHEN Long-wei, et al. Summary of liquefaction macrophenomena in Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering. 2010, 32(4): 643-650. (in Chinese))
    [5] 袁晓铭, 曹振中, 孙 锐, 等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报, 2009, 28(6): 1288-1296. (YUAN Xiao-ming, CAO Zhen-zhong, SUN Rui, et al. Preliminary research on liquefaction characteristics of wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1288-1296. (in Chinese))
    [6] 陈国兴, 金丹丹, 常向东, 等. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学, 2013, 34(10): 2737-2755. (CHEN Guo-xing, JIN Dan-dan, CHANG Xiang-dong, et al. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics, 2013, 34(10): 2737-2755. (in Chinese))
    [7] 杜修力, 路德春. 土动力学与岩土地震工程研究进展[J]. 岩土力学, 2011, 32(增刊2): 10-20. (DU Xiu-li, LU De-chun. Advances in soil dynamics and geotechnical earthquake engineering[J]. Rock and Soil Mechanics. 2011, 32(S2): 10-20. (in Chinese))
    [8] CERATO A B, LUTENEGGER A J. Specimen size and scale effects of direct shear box tests of sands[J]. Geotechnical Testing Journal, 2006, 29(6): 507-516.
    [9] CERATO A B, LUTENEGGER A J. Scale effects of shallow foundation bearing capacity on granular material[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(10): 1192-1202.
    [10] 王继庄. 粗粒料的变形特性和缩尺效应[J]. 岩土工程学报, 1994, 16(4): 89-95. (WANG Ji-zhuang. Deformation characteristics of coarse aggregate and scale effect[J]. Chinese Journal of Geotechnical Engineering. 1994, 16(4): 89-95. (in Chinese))
    [11] MOHSEN H S, MOHAMMAD R S. Effects of membrane compliance on pore water pressure generation in gravelly sands under cyclic loading[J]. ASTM Geotechnical Testing Journal, 2010, 33(5): 375-384.
    [12] KOKUSHO T. Dynamic properties of gravel layers investigated by in-situ freezing sampling[C]// Proc Ground Failures under Seismic Conditions. 1994: 121-140.
    [13] GOTO S, SUZUKI Y, NISHIO S, et al. Mechanical properties of undisturbed tone-river gravel obtained by in-situ freezing method[J]. Soils and Foundations, 1992, 32(3): 15-25.
    [14] HATANAKA M, SUZUKI Y, KAWASAKI T, et al. Cyclic undrained shear properties of high quality undisturbed tokyo gravel[J]. Soils and Foundations, 1988, 28(4): 57-68.
    [15] ISHIHARA K. Soil behavior in earthquake geotechnics[M]. Oxford: Clarendon Press, 1996.
    [16] EVANS M D, ZHOU S. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
    [17] KUENZA K, TOWHATA I, ORENSE R P, et al. Undrained torsional shear tests on gravelly soils[J]. Landslides, 2004, 1(3): 185-194.
    [18] 王昆耀, 常亚屏, 陈 宁.饱和砂砾料液化特性的试验研究[J]. 水利学报, 2000(2): 37-41. (WANG Kun-yao, CHANG Ya-ping, CHEN Ning. Experimental study on liquefaction characteristics of saturated sandy gravel[J]. Journal of Hydraulic Engineering, 2000(2): 37-41. (in Chinese))
    [19] 汪闻韶, 常亚屏, 左秀汉. 饱和砂砾料在振动和往返加荷下的液化特性[M]// 水利水电科研究院科学研究论文集(第23集). 北京: 水利电力出版社, 1986. (WANG Wen-shao, CHANG Ya-ping, ZUO Xiu-han. Liquefaction characteristics of saturated sand-gravel materials under the vibration loading[M]// Science Research Papers of China Institute of Water Resources and Hydropower Research (23th set). Beijing: China Water & Power Press, 1986. (in Chinese))
    [20] 刘令瑶, 李桂芬, 丙东屏. 密云水库白河主坝保护层地震破坏及砂砾料振动液化特性[M]// 水利水电科研究院科学研究论文集(第8集). 北京: 水利电力出版社, 1982: 46-54. (LI Ling-yao, LI Gui-fen, BING Dong-ping. Earthquake damage of the protective layer of Baihe main dam of Miyun Reservoir and liquefaction characteristics of sand-gravel material[M]// Science Research Papers of China Institute of Water Resources and Hydropower Research (8th set). Beijing: China Water & Power Press, 1982: 46-54. (in Chinese))
    [21] CAO Z, LESLIE YOUD T, YUAN X. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, M s =8.0[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(8): 1132-1143.
    [22] 刘萌成, 高玉峰, 刘汉龙, 等. 粗粒料大三轴试验研究进展[J].岩土力学, 2002, 23(2): 217-221. (LIU Meng-cheng, GAO Yu-feng, LIU Han-long, et al. Development of study on a large scale triaxial test of coarse-grained materials[J]. Rock and Soil Mechanics, 2002, 23(2): 217-221. (in Chinese))
    [23] 王炳辉, 陈国兴, 王志华, 等. 基于 WFI 动三轴试验仪的小型土箱震动台试验系统研制[J]. 地震工程与工程振动, 2011, 31(2): 155-161. (WANG Bing-hui, CHNE Guo-xing, WANG Zhi-hua, et al. Development in small soil-box shaking table test system based on WFI triaxial test apparatus[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(2): 155-161. (in Chinese))
    [24] BRENNAN A J, THUSYANTHAN N I, MADABHUSHI S P. Evaluation of shear modulus and damping in dynamic centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1488-1497.
    [25] 陈国兴, 王炳辉, 孙 田. 饱和南京细砂动剪切模量特性的大型振动台试验研究[J]. 岩土工程学报, 2012, 34(4): 582-590. (CHEN Guo-xing, WANG Bing-hui, SUN Tian. Dynamic shear modulus of saturated Nanjing fine sand in large scale shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 582-590. (in Chinese))
    [26] 汪闻韶. 土体液化与极限平衡和破坏的区别和关系[J].岩土工程学报, 2005, 27(1): 1-10. (WANG Wen-shao. Distinction and interrelation between liquefaction, state of limit equilibrium and failure of soil mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 1-10. (in Chinese))
    [27] CASAGRANDE A. Liquefaction and cyclic deformation of sands: a critical review[C]// Proceedings of the 5th Pan-American Conference on Soil Mechanics and Foundation Engineering. Buenos Aires, 1975.
    [28] POULOS S J, CASTRO G, FRANCE J W. Liquefaction evaluation procedure[J]. Journal of Geotechnical Engineering, 1985, 111(6): 772-792.
    [29] 凌贤长, 唐 亮, 于恩庆. 可液化场地地震振动孔隙水压力增长研究的大型振动台试验及其数值模拟[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3998-4003. (LING Xian-zhang, TANG Liang, YU En-qing. Large-scale shaking table test and its numerical simulation of research on build-up behaviour of seismically-induced pore water pressure in liquefiable site[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3998-4003. (in Chinese))
    [30] 王炳辉, 陈国兴. 循环荷载下饱和南京细砂的孔压增量模型[J]. 岩土工程学报, 2011, 33(2): 188-194. (WANG Bing-hui, CHEN Guo-xing. Pore water pressure increment model for saturated Nanjing fine sand subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering. 2011, 33(2): 188-194. (in Chinese))
    [31] 王志华, 周恩全, 陈国兴, 等. 循环荷载下饱和砂土固-液相变特征[J]. 岩土工程学报, 2012, 34(9): 1604-1610. (WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing, et al. Characteristics of solid-liquid phase change of saturated sand under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1604-1610. (in Chinese))
    [32] TATSUOKA F, OCHI K, FUJII S, et al. Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods[J]. Soils and Foundations, 1986, 26(3): 23-41.
    [33] 潘 华. 复杂应力条件下饱和南京细砂动力特性试验研究[D]. 南京: 南京工业大学, 2011. (PAN Hua. Experimental research on dynamic behavior of saturated nanjing fine sand under complex stress conditions[D]. Nanjing: Nanjing Tech University, 2011. (in Chinese))
    [34] 王炳辉, 刘建达, 陈国兴. 结构性和相对密度对南京细砂抗液化强度的影响[J]. 防灾减灾工程学报, 2007, 27(4): 383-388. (WANG Bing-hui, LIU Jian-da, CHEN Guo-xing. Effects of relative density and structural properties on liquefaction resistance of Nanjing fine sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(4): 383-388. (in Chinese))
    [35] 陈国兴. 岩土地震工程学[M]. 北京: 科学出版社, 2007. (CHEN Guo-xing. Geotechnical earthquake engineering[M]. Beijing: Science Press, 2007. (in Chinese))
  • 期刊类型引用(16)

    1. 加瑞,楚振兴. 地质聚合物加固软土的研究现状与进展. 硅酸盐通报. 2025(02): 490-500 . 百度学术
    2. 马丽媛,李滢,陈曦. 再生微粉和矿物掺合料对水泥浆体微观结构的影响研究. 青海大学学报. 2024(01): 24-31 . 百度学术
    3. 谷雷雷,张梅,邓先军,吉久发,于剑波,王盛年. 水泥复合偏高岭土稳定粉砂土力学特性试验研究. 地质与勘探. 2024(01): 148-155 . 百度学术
    4. 王志良,陈玉龙,申林方,施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制. 材料导报. 2024(08): 141-147 . 百度学术
    5. 黎宇,胡明鉴,郑思维,王志兵. 电石渣-矿渣固化膨胀土强度及微观机制研究. 岩土力学. 2024(S1): 461-470 . 百度学术
    6. 胡家宇,徐菲,钱文勋,肖怀前,葛津宇,李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理. 材料导报. 2024(17): 127-130 . 百度学术
    7. 韩瑞凯,陈宇鑫,张健,李召峰,王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响. 材料导报. 2024(22): 27-34 . 百度学术
    8. 何俊,管家贤,吕晓龙,张驰. 纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能. 硅酸盐通报. 2023(04): 1344-1352 . 百度学术
    9. 胡鑫,孙强,晏长根,赵春虎,王少飞. 陕北烧变岩水-岩作用的劣化特性. 煤田地质与勘探. 2023(04): 76-84 . 百度学术
    10. 何俊,管家贤,龙思昊. MgSO_4硅粉改良固化淤泥的渗透性能及孔隙特征. 水利水电技术(中英文). 2023(07): 218-226 . 百度学术
    11. 李丽华,韩琦培,杨星,肖衡林,李文涛,黄少平. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究. 土木工程学报. 2023(12): 166-176 . 百度学术
    12. 王伟,刘静静,李娜,马露. 纳米SiO_2改性滨海水泥土的短龄期力学性能与微观机制. 复合材料学报. 2022(04): 1701-1714 . 百度学术
    13. 黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 . 百度学术
    14. 王盛年,高新群,吴志坚,惠洪雷,张兴瑾. 水泥偏高岭土复合稳定粉砂土渗透特性试验研究. 岩土力学. 2022(11): 3003-3014 . 百度学术
    15. 李晓丽,赵晓泽,申向东. 碱激发对砒砂岩地聚物水泥复合土强度及微观结构的影响机理. 农业工程学报. 2021(12): 73-81 . 百度学术
    16. 徐长文,阮波. 冻融循环下纤维水泥改良风积沙NMR试验研究. 铁道科学与工程学报. 2021(09): 2289-2298 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 35
出版历程
  • 收稿日期:  2014-09-07
  • 发布日期:  2015-11-19

目录

    /

    返回文章
    返回