• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

可液化地基中单桩基础的三维数值分析方法及应用

王睿, 张建民

王睿, 张建民. 可液化地基中单桩基础的三维数值分析方法及应用[J]. 岩土工程学报, 2015, 37(11): 1979-1985. DOI: 10.11779/CJGE201511006
引用本文: 王睿, 张建民. 可液化地基中单桩基础的三维数值分析方法及应用[J]. 岩土工程学报, 2015, 37(11): 1979-1985. DOI: 10.11779/CJGE201511006
WANG Rui, ZHANG Jian-min. Three-dimensional elastic-plastic analysis method for piles in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1979-1985. DOI: 10.11779/CJGE201511006
Citation: WANG Rui, ZHANG Jian-min. Three-dimensional elastic-plastic analysis method for piles in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1979-1985. DOI: 10.11779/CJGE201511006

可液化地基中单桩基础的三维数值分析方法及应用  English Version

基金项目: 国家自然科学基金项目(51038007,51079074)
详细信息
    作者简介:

    王睿(1987- ),男,博士,主要从事岩土工程抗震方面研究。E-mail: wangrui_05@mail.tsinghua.edu.cn。

Three-dimensional elastic-plastic analysis method for piles in liquefiable ground

  • 摘要: 在砂土液化大变形物理机制的基础上,建立了三维的砂土液化大变形统一本构模型,该本构模型能够实现对不同状态砂土单调和循环加载以及液化前后力学行为的统一描述。利用这一本构模型,在OpenSees有限元平台上发展了针对可液化地基中桩基础震动的三维弹塑性有限元动力时程分析方法。在有限元分析中,土体采用u-p格式流体固体耦合立方体单元模拟,桩基础采用立方体实体单元模拟。利用本文建立的本构模型和相应分析方法,对水平可液化地基中单桩基础,以及发生侧向流动的倾斜地基中单桩基础的离心机振动台试验进行了三维有限元数值模拟。模拟结果验证了数值方法在模拟地基和桩基础震动响应方面的有效性。
    Abstract: Based on the physics of large post-liquefaction deformation of sand, a three-dimensional unified plastic model for the large post-liquefaction deformation of sand is developed. The constitutive model is able to achieve unified description of the behaviour of sand at different states under monotonic and cyclic loadings during both pre- and post-liquefaction regimes. Using the model, a three-dimensional dynamic finite element analysis method for piles in liquefiable ground is established. In the finite element analysis, the soil is modelled through u-p form coupled brick elementss and the pile through brick elements. Centrifuge shaking table tests on a single pile in level liquefiable and lateral spreading grounds are simulated using the proposed finite element analysis method. The results exhibits the effectiveness of the proposed constitutive model and simulation methods in reproducing the dynamic response of both the ground and piles.
  • [1] HAMADA M. Large ground deformations and their effects on lifelines: 1964 Niigata earthquake. case studies of liquefaction and lifelines performance during past earthquake[R]. National Centre for Earthquake Engineering Research, 1992.
    [2] TOKIMATSU K. Behaviour and design of pile foundations subjected to earthquakes[C]// Proceedings of the Twelfth Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. Singapore, 2003: 1065-1096.
    [3] ROLLINS K M, GERBER T M, LANE J D, et al. Lateral resistance of a full-scale pile group in liquefied sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(1): 115-125.
    [4] BOULANGER R W, ZIOTOPOULOU K. Formulation of a sand plasticity plane-strain model for earthquake engineering applications[J]. Soil Dynamics and Earthquake Engineering, 2013, 53: 254-267.
    [5] 王 睿, 张建民, 张 嘎. 液化地基侧向流动引起的桩基础破坏分析[J]. 岩土力学, 2011, 32(增刊1): 501-506. (WANG Rui, ZHANG Jian-min, ZHANG Ga. Analysis on the failure of piles due to lateral spreading[J]. Rock and Soil Mechanics, 2011, 32(S1): 501-506. (in Chinese))
    [6] FINN W D L, FUJITA N. Piles in liquefiable soils: seismic analysis and design issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 731-742.
    [7] CHENG Z, JEREMIC B. Numerical modeling and simulation of pile in liquefiable soil[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(11): 1405-1416.
    [8] 张建民, 王 刚. 砂土液化后大变形的机理[J]. 岩土工程学报, 2006, 28(7): 835-840. (ZHANG Jian-min, WANG Gang. Mechanism of large post-liquefaction deformation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 1405-1416. (in Chinese))
    [9] WANG R, ZHANG J M, WANG G. A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics, 2014, 59: 54-66.
    [10] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17. (ZHANG Jian-min. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 12-17. (in Chinese))
    [11] BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
    [12] LI X S, WANG Y. Linear representation of steady-state linefor sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217.
    [13] ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[C]// Proceedings of the Royal Society of London, Series a, Mathematical and Physical Sciences. London, 1962: 500-527.
    [14] ZHANG J M. Cyclic critical stress state theory of sand with its application to geotechnical problems[D]. Tokyo: Tokyo Institute of Technology, 1997.
    [15] WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics, 1990, 116(5): 983-1001.
    [16] MCKENNA F, FENVES G L. OpenSees manual[EB/OL]. PEER Center, 2001. http: //OpenSees.berkeley.edu.
    [17] ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Computational geomechanics with special reference to earthquake engineering[M]. Chichester: John Wiley & Sons, 1999.
    [18] SANCHEZ M, ROESSET J M. Evaluation of models for laterally loaded piles[J]. Computers and Geotechnics, 2013(48): 316-320.
    [19] 张建民, 于玉贞, 濮家骝, 等. 电液伺服控制离心机振动台系统研制[J]. 岩土工程学报, 2004, 26(6): 843-845. (ZHANG Jian-min, YU Yu-zhen, PU Jia-liu, et al. Development of a shaking table in electro-hydraulic servo-control centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 843-845. (in Chinese))
    [20] YANG J, SZE H Y. Cyclic strength of sand under sustained shear stress[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137: 1275-1285.
计量
  • 文章访问数:  342
  • HTML全文浏览量:  9
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-07
  • 发布日期:  2015-11-19

目录

    /

    返回文章
    返回