Intergranular stress, soil skeleton stress and effective stress
-
摘要: 有效应力的概念和有效应力原理对于土力学具有奠基性的意义。但对于诸如“有效应力是虚拟的应力还是真实应力”,“有效应力方程是否需要修正”等问题在土力学界一直存有争议,尚没有形成共识。在明确有效应力就是不包含孔隙流体压强作用的土骨架应力的基础上,由土颗粒间力的平衡分析和土骨架单元体的平衡分析得到有效应力与总应力以及孔隙流体压强关系的表达式。对于饱和土,这一表达式就是Terzaghi的有效应力方程。表明Terzaghi的有效应力是真实的物理量,具有明确的物理意义,Terzaghi的有效应力方程不需要做任何修正。文中阐明了有效应力、粒间应力和土骨架应力的物理意义及其相互关系。说明在分离考虑孔隙流体压强作用的情况下,有效应力、粒间应力和土骨架应力三者可以是一致的,即不包含孔隙水压强作用的粒间应力和土骨架应力就是有效应力。土骨架应力可以分成孔隙流体压强产生的土骨架应力和有效应力两部分,两者都对土体的变形和强度有贡献,但是作用效果不同。在孔隙流体压强作用对土体的变形和强度的贡献可以忽略的条件下,有效应力决定土的变形和强度。Abstract: The concept and principle of effective stress are significant to the development of soil mechanics. However, some problems such as “Is the effective stress the virtual or real stress?” and “Whether Terzaghi’s effective stress equation needs to be modified or not?” have long been considered to be controversial issues, and there is no consensus up to now. According to the definition that the effective stress is the skeleton stress due to all the external forces excluding pore water pressure, the relationship among the total stress, skeleton stress and pore water pressure can be obtained through the equilibrium analysis of intergranular force and free body of the soil skeleton. Then it may be seen that the expression of the relationship is the Terzaghi’s effective stress equation for saturated soils. It indicates that the Terzaghi’s effective stress is a real physical quantity and has a definite physical meaning. The Terzaghi’s effective stress equation is valid with no necessity to be modified. Moreover, the physical meaning and mutual relations of effective stress, intergranular stress and skeleton stress are clarified in this paper. It indicates that considering the effects of pore water pressure separately, the intergranular stress and the skeleton stress are the same as the effective stress. On the other hand, the skeleton stress can be divided into two components: one is that due to pore fluid pressure and the other is effective stress. They both contribute to the strength and deformation of a soil but play different roles. When the effect of the skeleton stress due to pore fluid pressure on the strength and deformation of a soil can be neglected, changes in the volume and shear strength of a soil are due exclusively to the ones in the effective stress.
-
[1] TERZAGHI K. The shearing resistance of saturated soils and the angle between the planes of shear[C]// Proceedings for the 1st International Conference on Soil Mechanics and Foundation Engineering (Cambridge, MA). Cambridge, 1936, 1, 54-56. [2] JENNINGS J E B. BURLAND J B. Limitations to the use of effective stresses in partly saturated soils[J]. Géotechnique, 1962, 12(2): 125-144. [3] BISHOP A W, BLIGHT G E. Some aspects of effective stress in saturated and partly saturated soils[J]. Géotechnique, 1963, 13(3): 177-197. [4] BIOT M A. General theory of three‐dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. [5] ZIENKIEWICZ O C, SHIOMI T. Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 71-96. [6] LADE P V, BOER R DE. The concept of effective stress for soil concrete and rock[J]. Géotechnique, 1997, 47(1): 61-78. [7] SKEMPTON A W. Effective stress in soils, concrete and rocks, pore pressure and suction in soils[C]// Conf organized by the British National Society of Int Society of soil Mech and Foundation Eng. London, 1961: 4-25. [8] 沈珠江. 关于固结理论和有效应力的讨论[J]. 岩土工程学报, 1995, 17(6): 118-119. (SHEN Zhu-jiang. Discussion on consolidation theory and effective stress[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 118-119. (in Chinese)) [9] 邵龙潭. 饱和土的土骨架应力方程[J]. 岩土工程学报, 2011, 33(12): 1833-1837. (SHAO Long-tan. Skeleton stress equation for saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1833-1837. (in Chinese)) [10] 邵龙潭. 孔隙介质力学分析方法及其在土力学中的应用[D]. 大连: 大连理工大学, 1996. (SHAO Long-tan. Fundamental theory of porous material mechanics and its application in soil mechanics[D]. Dalian: Dalian University of Technology, 1996. (in Chinese)) [11] 赵成刚, 白 冰, 王运霞. 土力学原理[M]. 北京: 清华大学出版社, 北京交通大学出版社, 2004. (ZHAO Cheng-gang, BAI Bing, WANG Yun-xia. Fundamental of soil mechanics[M]. Beijing: Tsinghua University Press, Beijing Jiaotong University Press, 2004. (in Chinese)) [12] 陈仲颐, 周景星, 王洪瑾. 土力学[M]. 北京: 清华大学出版社, 1994. (CHEN Zhong-yi, ZHOU Jing-xing, WANG Hong-jin. Soil mechnics[M]. Beijing: Tsinghua University Press, 1994. (in Chinese)) [13] 李广信. 关于有效应力原理的几个问题[J]. 岩土工程学报, 2011, 33(2): 315-320. (LI Guang-xin. Some problems about principle of effective stress[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 315-320. (in Chinese)) [14] 陈正汉, 秦 冰. 非饱和土的应力状态变量研究[J]. 岩土力学, 2012, 33(1): 1-11. (CHEN Zheng-han, QIN Bing. On stress state variables of unsaturated soils[J]. Rock and Soil Mechanics, 2012, 33(1): 1-11. (in Chinese)) [15] CARROLL M M. Mechanical response of fluid-saturated porous materials[C]// Proc 15th International Congress of Theoretical and Applied Mechanics. New York: North-Holland, 1980: 251-261. [16] 邵龙潭, 郭晓霞. 有效应力新解[M]. 北京: 水利水电出版社, 2014. (SHAO Long-tan, GUO Xiao-xia. New explanation of the effective stress[M]. Beijing: China Waterpower Press, 2014. (in Chinese)) -
期刊类型引用(29)
1. 彭普,李泽,张小艳,申林方,许芸. 土质边坡的单元失效概率与失效模式研究. 工程力学. 2024(01): 193-207 . 百度学术
2. 张亚平,李克钢,李明亮,秦庆词,王航龙. AHP-Critic法正态云模型在边坡稳定性评价中的应用. 有色金属工程. 2024(03): 146-155 . 百度学术
3. 甘永波,李亚军,李瑞杰,秦浩东,张杰,张彬. 考虑土体强度参数随机场的横向加载管-土相互作用分析. 水利水运工程学报. 2024(02): 143-153 . 百度学术
4. 楼晓明,孙逸玮,张蓟. 软土地基沟渠开挖诱发远处围堰失稳的实例分析. 水利水电技术(中英文). 2024(S1): 151-159 . 百度学术
5. 明思成,仉文岗,何昱苇,陈龙龙,覃长兵. 考虑各向异性空间变异性的边坡可靠度分析. 土木与环境工程学报(中英文). 2024(04): 60-74 . 百度学术
6. 周家文,陈明亮,瞿靖昆,胡宇翔,夏茂圃,蒋楠,李海波,范刚. 水库滑坡灾害致灾机理及防控技术研究与展望. 工程科学与技术. 2023(01): 110-128 . 百度学术
7. 朱磊,高欣悦,万愉快,丁一民. 地震力对边坡可靠度的影响. 科学技术与工程. 2023(10): 4324-4330 . 百度学术
8. 彭乐平,张桂银,孙鹏. 竹仔岭花岗岩矿边坡稳定性研究. 采矿技术. 2023(03): 52-56 . 百度学术
9. 刘昆珏,随意,程晓辉,陈朝晖,普利坚. 考虑围岩参数空间变异性的连拱隧道稳定性分析. 地下空间与工程学报. 2023(03): 911-920 . 百度学术
10. 曾勇,李亚军,严俊,田振华. 考虑土体强度参数深度依赖性的非平稳随机场边坡滑动深度和体积分析. 水资源与水工程学报. 2023(03): 174-183+192 . 百度学术
11. 黄延,陈雪亮. 基于不同排布型式的弧形抗滑桩边坡加固效果研究. 能源与环保. 2022(04): 24-29+44 . 百度学术
12. 许晓亮,张家富,曾林风,徐健文,史为政. 考虑网格自适应的边坡可靠性随机有限元极限分析研究. 三峡大学学报(自然科学版). 2022(06): 48-57 . 百度学术
13. 王小龙. 多级路堑边坡地震稳定性可靠度分析. 甘肃科技. 2022(19): 9-13+17 . 百度学术
14. 郑晓珣. 基于流固耦合的强度折减法的地下水渗流对隧道稳定性的影响研究. 能源与环保. 2022(11): 284-289 . 百度学术
15. 缑变彩,王帆. 基于稀疏混沌多项式的边坡可靠度分析方法. 土木工程与管理学报. 2021(02): 198-204+210 . 百度学术
16. 严柏杨,张京伍,朱德胜,葛彬,舒爽. 考虑土体不排水强度非平稳性对条形基础承载力影响的可靠度分析. 河北工程大学学报(自然科学版). 2021(01): 20-25 . 百度学术
17. 王鹏. 不同因素对填筑路堤边坡稳定性影响分析. 黑龙江交通科技. 2021(04): 73-75 . 百度学术
18. 刘辉,郑俊杰,章荣军. 考虑不排水抗剪强度空间变异性的黏土边坡系统失效概率分析. 岩土力学. 2021(06): 1529-1539 . 百度学术
19. 孙志豪,谭晓慧,孙志彬,林鑫,姚玉川. 基于上限分析的空间变异土质边坡可靠度. 岩土力学. 2021(12): 3397-3406 . 百度学术
20. 孙锐,杨峰,阳军生,赵乙丁,郑响凑,罗静静,姚捷. 基于二阶锥规划与高阶单元的自适应上限有限元研究. 岩土力学. 2020(02): 687-694 . 百度学术
21. 易红卫,樊陵姣,谌涛. 基于有限元分析的矿山边坡自动数值建模与分析研究. 矿冶工程. 2020(03): 30-33 . 百度学术
22. 陈朝晖,黄凯华. 土质边坡可靠性分析的分层非平稳随机场模型. 岩土工程学报. 2020(07): 1247-1256 . 本站查看
23. 刘爱娟,崔玉龙,刘铁新. 地震边坡动态临界加速度计算中抗剪强度参数概率分布分析. 地震工程学报. 2020(05): 1179-1186 . 百度学术
24. 张云雁. 基于GS-SVM的边坡稳定性预测模型. 水利水电技术. 2020(11): 205-209 . 百度学术
25. 黄俊,赵江,段祥睿,张洁. 基于强度折减法的抗滑桩加固边坡可靠度分析. 土木与环境工程学报(中英文). 2020(06): 11-18 . 百度学术
26. 曾韬睿,王林峰,朱洪州. 基于修正的传递系数法的粉土质边坡冻融稳定性分析. 科学技术与工程. 2019(09): 206-213 . 百度学术
27. 李泽发,吴震宇,卢祥,裴亮,杨哲. 抗拉强度空间变异性对重力坝地震开裂的影响分析. 工程科学与技术. 2019(04): 116-124 . 百度学术
28. 梁庆国,房军,张晋东,张延杰,蒲建军,王飞. 兰州轨道交通扰动场地黄土浸水试验研究. 地质力学学报. 2018(06): 803-812 . 百度学术
29. 吴志轩,杨军,邱天琦,沈兆普,梁宇钒. 基于FELA的随机场方法在考虑降雨入渗的边坡开挖稳定性分析中的应用. 地质力学学报. 2018(06): 813-821 . 百度学术
其他类型引用(46)