• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

低围压水平下QH-E模拟月壤三轴试验技术与力学特性

邹维列, 陈轮, 张俊峰, 刘小顺, 童朝霞

邹维列, 陈轮, 张俊峰, 刘小顺, 童朝霞. 低围压水平下QH-E模拟月壤三轴试验技术与力学特性[J]. 岩土工程学报, 2015, 37(8): 1418-1425. DOI: 10.11779/CJGE201508009
引用本文: 邹维列, 陈轮, 张俊峰, 刘小顺, 童朝霞. 低围压水平下QH-E模拟月壤三轴试验技术与力学特性[J]. 岩土工程学报, 2015, 37(8): 1418-1425. DOI: 10.11779/CJGE201508009
ZOU Wei-lie, CHEN Lun, ZHANG Jun-feng, LIU Xiao-shun, TONG Zhao-xia. Techniques for triaxial compression tests on simulant lunar soil QH-E and its mechanical behaviors under low confining stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1418-1425. DOI: 10.11779/CJGE201508009
Citation: ZOU Wei-lie, CHEN Lun, ZHANG Jun-feng, LIU Xiao-shun, TONG Zhao-xia. Techniques for triaxial compression tests on simulant lunar soil QH-E and its mechanical behaviors under low confining stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1418-1425. DOI: 10.11779/CJGE201508009

低围压水平下QH-E模拟月壤三轴试验技术与力学特性  English Version

基金项目: 国家自然科学基金项目(51079075)
详细信息
    作者简介:

    邹维列(1969- ),男,重庆丰都人,教授,博士生导师,主要从事非饱和土特性、土工合成材料应用、道路中的岩土工程问题等方面的教学和科研工作。E-mail: zwilliam@126.com。

  • 中图分类号: TU411

Techniques for triaxial compression tests on simulant lunar soil QH-E and its mechanical behaviors under low confining stress

  • 摘要: 月球的低重力环境对月面浅层月壤力学特性的影响很大。利用清华大学取自吉林省靖宇县境内的火山灰岩研制出的模拟月壤(QH-E),对GCTS公司生产的STX型动/应力路径三轴仪重新配置高精度的传感器,并采取专门的试验技术,成功实施了一系列低围压水平(3.13~25 kPa)的三轴压缩试验。试验结果表明,在低围压水平下:模拟月壤具有显著的剪胀效应;与常规围压水平(50~150 kPa)结果相比,同一相对密度模拟月壤的峰值摩擦角更高;相对密度越高,峰值摩擦角越大;切线模量和剪切模量均随着围压和相对密度的减小而减小;剪胀角随围压的减小和相对密度的增大而增大,且低围压水平下剪胀角对围压变化十分敏感。最后就低围压下QH-E模拟月壤与饱和砂土特性的差异,及重力场环境和施加围压的介质的影响进行了讨论。
    Abstract: A series of typical triaxial compression tests are conducted on simulant lunar soil QH-E, which is originated from cinerite from Jingyu County, Jilin Province and is developed by Tsinghua University. For the triaxial compression tests on QH-E under low confining stress, highly sensitive transducers are used to measure the volume change in the water surrounding the triaxial test specimen and to control the confining stress. The test results indicate that the QH-E under low confining stresses (3.13~25 kPa) shows the conspicuous dilatancy behavior. Compared with the results from the conventional confining stresses (50~150 kPa), the peak friction angle of QH-E under low confining stresses is larger. The higher the relative density of QH-E, the larger the peak friction angle. Both the tangent modulus and the shear modulus of QH-E decrease with the decrease of the confining stress and relative density, while the dilatancy angle increases with the decrease of the confining stress and the increase of the relative density. Moreover, under low confining stresses the differences of the properties between the QH-E in this study and the saturated sands in the literatures, and the influences of both the moon/terrestrial environments and water in pressure chamber on the properties of QH-E, are discussed.
  • [1] HEIKEN Grant, VANIMAN David, BEVAN M French. Lunar sourcebook: a user's guide to the moon[M]. Cambridge: Cambridge University Press, 1991: 475-594.
    [2] CARRIER W David. The four things you need to know about the geotechnical properties of lunar soil[R]. Florida: Lunar Geotechnical Institute, 2005.
    [3] CARRIER W David. Particle size distribution of lunar soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10): 956-959.
    [4] RICHMAN D, HOELZER H, CARPENTER P, et al. A quantitative method for evaluating regolith stimulants[C]// Space Technology and Applications Int. Forum—STAIF 2007, New York: AIP Publishing, 957 - 963.
    [5] DAVID S Mckay, JAMES L Carter, WALTER W Boles, et al. JSC-1: a new lunar soil simulant[C]// Proceeding of Engineering, Construction, and Operations in Space. Vol. IV, ASCE Publishing, 1994: 857-866.
    [6] WILLMAN B M, BOLES W B, MCKAY D S, et al. Properties of lunar soil simulant JSC-1[J]. Journal of Aerospace Engineering, 1995, 8(2): 77-87.
    [7] KLOSKY J Ledlie, STURE Stein, KO Hon-Yim, et al. Geotechnical behavior of JSC-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2000, 13 (4): 133-138.
    [8] ALSHIBLI Khalid A, HASAN Alsidqi. Strength properties of JSC-1A lunar regolith simulant[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 673-679.
    [9] MATTHEW R Everingham, NICHOLAS Pelster, ROBERT P Mueller, et al. Preparation and handling large quantities of JSC-1a lunar regolith simulant for the 2007 regolith excavation challenge[C]// Space Technology and Applications International Forum-STAIF 2008, New York: AIP publishing, 2008: 268-273.
    [10] RAME E, WIKINSON A, ELLIOT A, et al. Flowability of JSC-1a[R]. Ohio: National Center for Space Exploration Research, 2010.
    [11] HAYDAR Arslan, SUSAN Batiste, STEIN Sture. Engineering properties of lunar soil simulant JSC-1A[J]. Journal of Aerospace Engineering, 2010, 23(1): 70-83.
    [12] ZHENG Yong-chun, WANG Shi-jie, FENG Jun-ming, et al. CAS-1 simulated lunar soil[J]. Acta Mineralogical Sinica. 2007, 27(3/4): 571-578.
    [13] ZHENG Yong-chun, WANG Shi-jie, OUYANG Zi-yuan, et al. CAS-1 lunar soil simulant[J]. Advances in Space Research, 2009, 43: 448-454.
    [14] LI Yong-quan, LIU Jian-zhong, YUE Zong-yu. NAO-1: lunar highland soil simulant developed in China[J]. Journal of Aerospace Engineering, 2009, 21(1): 53-57.
    [15] 肖 龙, 贺新星, 吴 涛, 等. 月壤的性质与模拟月壤CUG-1A [C]// 中国空间科学学会第七次学术年会. 大连, 2009. (XIAO Long, HE Xin-xing, WU Tao, et al. NAO-1: The character of the lunar soil and the simulated lunar soil CUG-1A[C]// The Seventh Annual Seminar of Space Science Society of China. Dalian, 2009. (in Chinese))
    [16] 王 凯. 钻进取样模拟月壤的主要物理力学性质试验研究[D]. 北京: 清华大学, 2012. (WANG Kai. Experimental study on physical and mechanical properties of lunar soil simulant for drilling[D]. Beijing: Tsinghua University, 2012. (in Chinese))
    [17] 李志刚. 人工装置与模拟月壤相互作用的土工离心模型试验研究[D]. 北京: 清华大学, 2008. (LI Zhi-gang. Research on geotechnical centrifuge model tests on interaction between artificial device and simulated lunar soil[D]. Beijing: Tsinghua University, 2008. (in Chinese))
    [18] 李建桥, 邹 猛, 贾 阳, 等. 用于月面车辆力学试验的模拟月壤研究[J]. 岩土力学, 2008,29(6): 1557-1561. (LI Jian-qiao, ZOU Meng, GU Yang, et al. Lunar soil simulant for vehicle-terramechanics research in labtory[J]. Rock and Soil Mechanics, 2008, 29(6): 1557-1561. (in Chinese)
    [19] 蒋明镜, 李立青. TJ-1 模拟月壤的研制[J]. 岩土工程学报, 2011, 33(2): 209-214. (JIANG Ming-jing, LI Li-qing. Development of TJ-1 lunar soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 209-214. (in Chinese))
    [20] 蒋明镜, 李立青, 刘 芳, 等. 含水率和颗粒级配对 TJ-1 模拟月壤力学性能影响的试验研究[J]. 岩土力学, 2011, 32(7): 1921-1925. (JIANG Ming-jing, LI Li-qing, LIU Fang, et al. Effects of moisture content and gradation on mechanicalproperties of TJ-1 lunar soil simulant[J]. Rock and Soil Mechanics, 2011, 32(7): 1921-1925. (in Chinese))
    [21] 邹 猛, 李建桥, 何 玲, 等. 不同粒径分布模拟月壤承压特性试验研究[J]. 航空学报, 2012, 33(12): 2338-2346. (ZOU Meng, LI Jian-qiao, HE Ling, et al. Experimental study on the pressure-sinkage characteristic of the simulant regolith with different Particle size distribution[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2338-2346. (in Chinese))
    [22] 邹 猛, 李建桥, 刘国敏, 等. 模拟月壤地面力学性质试验研究[J]. 岩土力学, 2011, 32(4): 1057-1061. (ZOU Meng, LI Jian-qiao, LIU Guo-min, et al. Experimental study of terra-Mechanics characters of simulant lunar soil[J]. Rock and Soil Mechanics, 2011, 32(4): 1057-1061. (in Chinese))
    [23] 杨艳静, 向树红. 模拟月壤力学性质的试验和仿真研究[J]. 航天器环境工程, 2009, 26(增刊): 1-4. (YANG Yan-jing, XIANG Shu-hong. The mechanical properties of the test and simulation study on simulated lunar soil[J]. Spacecraft Environment Engineering, 2009, 26(S): 1-4. (in Chinese))
    [24] PONCE M, BELL J M. Shear strength of sand at extremely low pressures[J]. Journal of Soil mechanics and Foundations, 1971, 97(SM4): 625-638.
    [25] STROUD M A. The behavior of sand at low stress level in the simple direct-sheer apparatus[D]. Cambridge: Cambridge University, 1971.
    [26] FUKUSHINA S, TATSUOKA F. Strength and deformation characteristics of saturated sand at extremely low pressures[J]. Soils and Foundations, 1984, 24(4): 31-48.
    [27] STURE S, COSTES N, BATISTE S, et al. Mechanics of granular materials at low effective stresses[J]. J Aerosp Eng, 1998, 11(3): 67-72.
    [28] ALSHIBLI K A, STURE S, COSTES N C. Constitutive and stability behavior of soils in microgravity environment[C]// AIP Conf Proc Albuquerque. 2000.
计量
  • 文章访问数:  407
  • HTML全文浏览量:  2
  • PDF下载量:  504
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-10
  • 发布日期:  2015-08-24

目录

    /

    返回文章
    返回