• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于膨润土微观结构确定土水特征曲线的残余含水率

朱赞成, 孙德安, 王小岗, 陈雰, 王古平

朱赞成, 孙德安, 王小岗, 陈雰, 王古平. 基于膨润土微观结构确定土水特征曲线的残余含水率[J]. 岩土工程学报, 2015, 37(7): 1211-1217. DOI: 10.11779/CJGE201507006
引用本文: 朱赞成, 孙德安, 王小岗, 陈雰, 王古平. 基于膨润土微观结构确定土水特征曲线的残余含水率[J]. 岩土工程学报, 2015, 37(7): 1211-1217. DOI: 10.11779/CJGE201507006
ZHU Zan-cheng, SUN De-an, WANG Xiao-gang, CHEN Fen, WANG Gu-ping. Determination of residual water content in SWCC based on microscopic structure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1211-1217. DOI: 10.11779/CJGE201507006
Citation: ZHU Zan-cheng, SUN De-an, WANG Xiao-gang, CHEN Fen, WANG Gu-ping. Determination of residual water content in SWCC based on microscopic structure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1211-1217. DOI: 10.11779/CJGE201507006

基于膨润土微观结构确定土水特征曲线的残余含水率  English Version

基金项目: 国家自然科学基金项目(11272194); 浙江省公益性技术应; 用研究计划项目(2014C37085); 浙江省自然科学基金项目(Y15E080014)
详细信息
    作者简介:

    朱赞成(1977- ),男,讲师,博士研究生,主要从事非饱和土等方面的科研和教学。E-mail: zancheng_77@163.com。

Determination of residual water content in SWCC based on microscopic structure of bentonite

  • 摘要: 根据蒙脱石层间水化微观结构,建立了蒙脱石水化后的含水率计算公式,并认为蒙脱石发生第1层水化时的含水率即为残余含水率。用4种膨润土土水特征曲线试验数据,分析探讨了考虑不同初始干密度和同一初始干密度下不同温度环境等因素对膨润土土水特征曲线的残余含水率影响。研究结果表明,膨润土的残余含水率与膨润土的比表面积、水膜厚度以及水膜密度成正比,而与膨润土的初始干密度和温度无关。通过实测和计算残余含水率比较,验证了该公式的合理性。
    Abstract: According to the theory of the interlamellar hydration microscopic structure of montmorillonite proposed by Forslind, a formula for calculating the water content of montmorillonite is established after its hydration. When the montmorillonite absorbs only monolayer of water molecules, the water content is considered as the residual water content. The influences of the initial dry density and temperature on the residual water content of bentonite are investigated by using measured soil-water characteristic curves of four different kinds of bentonites. The results show that the residual water content of bentonite is proportional to the specific surface area of bentonite, the thickness and the density of hydrated layer of water molecules, regardless of the initial density and temperature. The comparison between the measured and predicted residual water contents shows that the proposed formula is reasonable.
  • [1] ROMERO E, GENS A, LLORET A. Suction effects on a compacted clay under non-isothermal conditions[J]. Géotechnique, 2003, 53(1): 65-81.
    [2] VILLAR M V, LLORET A. Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite[J]. Applied Clay Science, 2004, 26: 337-350.
    [3] HOFFMANN C, ALONSO E E, ROMERO E. Hydro- mechanical behaviour of bentonite pellet mixtures[J]. Physics and Chemistry of the Earth, 2007, 32: 832-849.
    [4] JACINTO A C, VILLAR M V, GÓMEZ-ESPINA R, et al. Adaptation of the van Genuchten expression to the effects of temperature and density for compacted bentonites[J]. Applied Clay Science, 2009, 42: 575-582.
    [5] 叶为民, 钱丽鑫, 陈 宝, 等. 高压实高庙子膨润土的微观结构特征[J]. 同济大学学报(自然科学版), 2009, 37(1): 31-35. (YE Wei-min, QIAN Li-xin, CHEN Bao, et al. Characteristics of micro-structure of densely compacted gaomiaozi bentonite [J]. Journal of Tongji University (Natural Science), 2009, 37(1): 31-35. (in Chinese))
    [6] 孙德安, 孟德林, 孙文静, 等. 两种膨润土的土水特征曲线[J]. 岩土力学, 2011, 32(4): 1293-1298. (SUN De-an, MENG De-lin, SUN Wen-jing, et al. Soil-water characteristic curves of two bentonites[J]. Rock and Soil Mechanics, 2011, 32(4): 1293-1298. (in Chinese))
    [7] 张虎元, 张 明, 崔素丽, 等. 混合型缓冲回填材料土水特征曲线测试与修正[J]. 岩石力学与工程学报, 2011, 30(2): 382-390. (ZHANG Hu-yuan, ZHANG Ming, CUI Su-li, et al. Determination and modification of soil-water characteristic curves of bentonite-sand mixtures as high-level waste backfill/buffer material[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 382-390. (in Chinese))
    [8] 秦 冰, 陈正汉, 孙发鑫, 等. 高吸力下持水曲线的温度效应及其吸附热力学模型[J]. 岩石力学与工程学报, 2012, 34(10): 1877-1886. (QIN Bing, CHEN Zheng-han, SUN Fa-xin, et al. Temperature effect on water retention curve under high suction and its modeling based on thermodynamics of sorption[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 34(10): 1877-1886. (in Chinese))
    [9] YE W M, WAN M, CHEN B, et al. Temperature effects on the unsaturated permeability of the densely compacted GMZ01 bentonite under confined conditions[J]. Engineering Geology, 2012, 126: 1-7.
    [10] BROOKS R, COREY A. Hydraulic properties of porous media. Colorado State University, Forty Collins, Hydrology Paper, 1964.
    [11] VAN GENUCHTEN M T H. A closed form equation predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44: 892-898.
    [12] LUCKNER L, VAN GENUCHTEN M T H, NEILSEN D R. A consistent set of parametric models for the flow of water and air as immiscible fluids in the subsurface[J]. Water Resources Research , 1989, 25: 2187-2189.
    [13] FAIRBRIDGE R, FINKL C. The encyclopedia of soil science part 1[M]. Stroudsburg: Hutchinson and Ross Inc. 1979.
    [14] VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33: 379-392.
    [15] FLEUREAU Jean-Marie, VEBRUGGE Jean-Claude, HUERGO P J, et al. Aspects of the behaviour of compacted clayey soils on drying and wetting paths[J]. Canadian Geotechnical Journal, 2002, 39: 1341-1357.
    [16] ZHANG F. Soil water retention and relative permeability for full range of saturation[R]. Pacific Northwest National Laboratory, 2010.
    [17] LU N, GODT J W. Hillslope hydrology and stability[M]. London: Cambridge University Press, 2013.
    [18] ZHENG Y, ZAOUI A, SHAHROUR A. A theoretical study of swelling and shrinking of hydrated Wyoming montmorillonite[J]. Applied Clay Science, 2011, 51: 177-181.
    [19] KOZAKI T, INADA K, SATO S, et al. Diffusion mechanism of chloride ions in sodium montmorillonite[J]. Journal of Contaminant Hydrology, 2001, 47: 159-170.
    [20] MCQUEEN I S, MILLER R F. Approximating soil moisture characteristics from limited data: empirical evidence and tentative model[J]. Water Research, 1974, 10(3): 521-527.
    [21] BRADBURY M H, BAEYENS B. Pore-water chemistry in compacted re-saturated MX-80 bentonite[J]. Journal of Contaminant Hydrology, 2003, 61: 329-338.
    [22] FORSLIND E. A theory of water[R]. Stockholm: Swedish Cement and Concrete Research Institute at the Royal Institute of Technology, Stockholm, 1952, 16: 43.
    [23] GRIM R E. Clay mineralogy[M]. 2nd ed. New York: McGraw-Hill Inc, 1968.
    [24] PUSCH R, KARNLAND O, Hökmark H. GMM — A general microstructural model for qualitative and quantitative studies of smectite clays[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Company, 1990.
    [25] 赵珊茸. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2008. (ZHAO Shan-rong. Crystallography and mineralogy[M]. Beijing: Higher Education Press, 2008.(in Chinese))
    [26] HAWKIS R K, EGELSTAFF P A. Interfacial water structure in montmorillonite from neutron diffraction experiments[J]. Clays and Clay Minerals, 1980, 28(1): 19-28.
    [27] DERJAGUIN B V, KARASEV V V, KHROMOVA E N. Thermal expansion of water in fine pores[J]. Journal of Colloid and Interface Science, 1986, 109(2): 586-587.
    [28] JACINTO A C, VILLAR M V, LEDESMA A. Influence of water density on the water-retention curve of expansive clays[J]. Géotechnique, 2012, 62( 8): 657-667.
    [29] VILLAR M V, Gómez-Espina R. Effect of temperature on the water retention capacity of FEBEX and MX-80 bentonites[C]// 1st European Conference on Unsaturated Soils: Advances in Geo-engineering. London, 2008: 257-262.
    [30] 刘月妙, 温志坚. 用于高放射性废物深地质处置的黏土材料研究[J]. 矿物岩石, 2003, 23(4): 42-45. (LIU Yue-miao, WEN Zhi-jian. Study on clay-based materials for the repository of high level radioactive waste[J]. Journal Mineral Petrol, 2003, 23(4): 42-45. (in Chinese))
    [31] SUN D A, SUN W J. Swelling characteristics of GMZ bentonites and its prediction[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(2): 103-109.
  • 期刊类型引用(18)

    1. 宋健,潘驭航,陆朱汐,姬建,张飞,高玉峰. 考虑场地效应的多点地震动作用下边坡永久位移分析. 岩土工程学报. 2025(01): 65-75 . 本站查看
    2. 刘中宪,卢飞龙,边煜凯,黄振恩. 甘肃文县城关镇山体-沉积河谷三维地震动IBEM模拟. 防灾减灾工程学报. 2025(01): 1-12 . 百度学术
    3. 刘中宪,周涛,黄振恩,黄磊,章博峰. 基于快速边界元方法的倾滑断层近场效应和盆地聚焦效应耦合作用研究. 应用力学学报. 2024(04): 896-906 . 百度学术
    4. 陈家旺,黄博,凌道盛,王楠. SV波斜入射作用下梯形沉积河谷场地地震动分析. 地基处理. 2024(05): 434-443 . 百度学术
    5. 范观盛,黄靥欢,刘春,乐天呈. 基于MatDEM的岩石应力波传播与衰减特性敏感性分析. 高校地质学报. 2023(03): 479-486 . 百度学术
    6. 何卫平,李小军,杜修力,姚惠芹. P波入射分界面叠加区质点运动形成机制与峰值规律. 振动与冲击. 2023(18): 81-87+163 . 百度学术
    7. 蔡曼琳,丁海平,于彦彦. 圆弧形沉积谷地在平面SV波入射下地震响应的有限元分析. 世界地震工程. 2022(01): 229-240 . 百度学术
    8. Zhihui Zhu,Yongjiu Tang,Zhenning Ba,Kun Wang,Wei Gong. Seismic analysis of high-speed railway irregular bridge–track system considering V-shaped canyon effect. Railway Engineering Science. 2022(01): 57-70 . 必应学术
    9. 蔡曼琳. 圆弧形沉积谷地在平面SV波入射下地震响应. 四川建材. 2022(05): 63-64 . 百度学术
    10. 阙仁波. 对地震危险性分析的示例性探讨. 四川建筑科学研究. 2022(03): 10-19 . 百度学术
    11. 常晁瑜,薄景山,乔峰,段玉石,张毅毅. 地震动强度对黄土地震滑坡后壁形态的影响. 自然灾害学报. 2022(03): 106-115 . 百度学术
    12. Mohsen Isari,Reza Tarinejad. Introducing an effective coherence function to generate non-uniform ground motion on topographic site using time-domain boundary element method. Earthquake Engineering and Engineering Vibration. 2021(01): 89-100 . 必应学术
    13. 李郑梁,李建春,刘波,聂萌萌. 浅切割的高山峡谷复杂地形的地震动放大效应研究. 工程地质学报. 2021(01): 137-150 . 百度学术
    14. 权雪瑞,黄靥欢,刘春,郭长宝. 川藏铁路线V形深切河谷地形地震放大效应数值模拟. 现代地质. 2021(01): 38-46 . 百度学术
    15. 刘中宪,刘英,孟思博,黄磊. 基于间接边界元法的近断层沉积谷地地震动模拟. 岩土力学. 2021(04): 1141-1155+1169 . 百度学术
    16. 梁建文,吴孟桃,巴振宁. 流体饱和半空间二维地形三分量弹性波散射间接边界元模拟. 地球物理学报. 2021(08): 2766-2779 . 百度学术
    17. 邓鹏. 单体边坡地形的地震动力响应及其放大效应的数值分析. 地震学报. 2020(03): 349-361+378 . 百度学术
    18. 孔宪京,周晨光,邹德高,余翔. 高土石坝-地基动力相互作用的影响研究. 水利学报. 2019(12): 1417-1432 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数:  454
  • HTML全文浏览量:  5
  • PDF下载量:  594
  • 被引次数: 41
出版历程
  • 收稿日期:  2014-07-22
  • 发布日期:  2015-07-19

目录

    /

    返回文章
    返回