• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高温后上海软黏土的物理性能试验研究

陈正发, 朱合华, 闫治国, 王玉朋

陈正发, 朱合华, 闫治国, 王玉朋. 高温后上海软黏土的物理性能试验研究[J]. 岩土工程学报, 2015, 37(5): 924-931. DOI: 10.11779/CJGE201505019
引用本文: 陈正发, 朱合华, 闫治国, 王玉朋. 高温后上海软黏土的物理性能试验研究[J]. 岩土工程学报, 2015, 37(5): 924-931. DOI: 10.11779/CJGE201505019
CHEN Zheng-fa, ZHU He-hua, YAN Zhi-guo, WANG Yu-peng. Experimental study on physical properties of Shanghai soft clay under high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 924-931. DOI: 10.11779/CJGE201505019
Citation: CHEN Zheng-fa, ZHU He-hua, YAN Zhi-guo, WANG Yu-peng. Experimental study on physical properties of Shanghai soft clay under high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 924-931. DOI: 10.11779/CJGE201505019

高温后上海软黏土的物理性能试验研究  English Version

基金项目: 国家自然科学基金项目(51478345); 土木工程防灾国家重; 点实验室自主课题资助项目
详细信息
    作者简介:

    陈正发(1971- ),男,安徽蚌埠人,博士研究生,主要从事岩土灾害、岩土工程材料等方面的研究工作。E-mail: czf2002@126.com。

    通讯作者:

    闫治国

Experimental study on physical properties of Shanghai soft clay under high temperatures

  • 摘要: 土的温度效应是岩土工程领域的热点问题,但对于100℃以上高温环境下土的物理性能的研究并不多。详细介绍了自行研制的高温加热试验装置,并利用该设备测定了上海软黏土样在105℃,120℃,150℃和200℃等高温加热2.5 h和4.0 h后的体积变化、干密度和饱和度的变化,测定了105℃,150℃和200℃下恒温4.0 h土的导热情况。试验结果表明土样的体积和饱和度均随温度增加而减小,土样的干密度随温度的增加而增加,且随加热时间增加变化趋缓;湿土和干土的导热系数均随温度升高而增大,且干土的导热系数小于湿土的导热系数。说明软黏性土在100℃以上高温环境作用下会出现塑性变形和加热硬化现象,高温对土的导热系数影响显著。
    Abstract: The temperature effect of soil is a hot issue in geotechnical engineering. However, the researches on the physical properties of soil in high-temperature environment over 100˚C are still insufficient. A kind of self-developed high-temperature heating apparatus is introduced, by which the variations of mass, moisture content, diameter and height of different soft clay samples from Shanghai are measured in the high-temperature environment of 105˚C, 120˚C, 150˚C and 200˚C for 2.5 hours or 4.0 hours. The variations of soil conductivity under 105˚C, 150˚C and 200˚C for 4.0 hours are also examined. The experimental results indicate that the volume and saturation of Shanghai soft clay decrease with the increasing temperature while the dry density of soil samples increases, and the trends of variations turn slow. The longer the heating time is, the greater the variation values of volume, saturation and dry density. The high temperature causes the increase of thermal conductivity for wet soil and dry soil and the thermal conductivity of dry soil is less than that of wet soil. Plastic deformation and heat hardening can be found for the soft clay in high-temperature environment, and the high temperature significantly affects the thermal conductivity of soft clay above 100˚C.
  • [1] GENS A. Soil-environment interaction in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74.
    [2] VUILLEUMIER F, WEATHERILL A, CRAUSAZ B. Safety aspects of railway and road tunnel: example of the LÖtschberg railway tunnel and Mont-Blanc road tunnel[J]. Tunnelling and Underground SpaceTechnology, 2002, 17(2): 153-158.
    [3] 刘滔. 火灾高温条件下软土隧道外荷载变化规律研究[D]. 上海: 同济大学, 2012. (LIU Tao. A study on varying law of the external load on the tunnel in soft clay with fire high temperature[D]. Shanghai: Tongji University, 2012. (in Chinese))
    [4] EL-ARABI I, DUDDECK H, AHRENS H. Structural analysis for tunnels exposed to fire temperatures[J]. Tunnelling and Underground Space Technology, 1992, 7(1): 19-24.
    [5] HAACK A. Fire protection in traffic tunnels-initial findings from large-scale tests[J]. Tunnelling and Underground Space Technology, 1992, 7(4): 363-375.
    [6] FINN F N. The effect of temperature on the consolidation of soils[J]. ASTM Special Technical Publication, 1951, 126(6): 65-72.
    [7] LAMBE T W. The structure of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1958, 84(2): 1-34.
    [8] ANDERSLAND O B, AKILI W. Stress effect on creep rates of a frozen clay soil[J]. Géotechnique, 1967, 17(1): 27-39.
    [9] CAMPANELLA R G, MITCHELL J K. Influence of temperature variations on soil behaviour[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1968, 94(3): 1-37.
    [10] HABIBAGAHI K. Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal, 1977, 7(1): 14-34.
    [11] DEMARS K R, CHARLES R D. Soil volume changes induced by temperature cycling[J]. Canadian Geotechnical Journal, 1982, 19(2): 188-194.
    [12] BALDI G, HUECKEL T, PELLEGRINI R. Thermal volume changes of the mineral-water system in low-porosity clay soils[J]. Canadian Geotechnical Journal, 1988, 25(4): 807-825.
    [13] HUECKEL T, BORSETTO M. Thermoplasticity of saturated soils and shales: constitutive equations[J]. Journal of Geotechnical Engineering, ASCE, 1990, 116(12): 1765-1777.
    [14] THOMAS H R, KING S D. Coupled temperature/capillary potential variations in unsaturated soil[J]. Journal of Engineering Mechanics, ASCE, 1991, 117(11): 2475-2491.
    [15] SCHREFLER B A, ZHANG X. A fully coupled model for water flow and air flow in deformable porous media [J]. Water Resource Research, 1993, 29(1): 155-167.
    [16] CUI Y J, SULTAN N, DELAGE P. A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal, 2000, 37(3): 607-620.
    [17] KHALILI N, LORET B. An elasto-plastic model for nonisothermal analysis of flow and deformation in unsaturated porous media: formulation[J]. International Journal of Solids and Structure, 2001, 38(46/47): 8305-8330.
    [18] GATMIRI B, ARSON C. -STOCK, a powerful tool of thermohydromechanical behaviour and damage modelling of unsaturated porous media[J]. Computers and Geotechnics, 2008, 35(6): 890-915.
    [19] MONFARED M, SULEM J, DELAGE P, et al. On the THM behaviour of a sheared Boom clay sample: application to the behavior and sealing properties of the EDZ[J]. Engineering Geology, 2012, 124(4): 47-58.
    [20] VERMA S, JAYAKUMAR S. Impact of forest fire on physical, chemical and biological properties of soil: a review[C]// Proceedings of the International Academy of Ecology and Environmental Sciences, 2012: 168-176.
    [21] DAVID B V, JOSE A G P. JAVIER M A, et al. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire[J]. Geoderma, 2014, 213(1): 400-407.
    [22] MORIN R, SILVA A J. The effects of high pressure and high temperature on some physical properties of ocean sediments[J]. Journal of Geophysical research, 1984, 89(B1): 511-526.
    [23] AGAI J, MORGENSTEM N R, SCOTT J D. Shear strength and stress strain behaviour of Athabasca oil sand at elevated temperatures and pressure[J]. Canadian Geotechnical Journal, 1987, 24(1): 1-10.
    [24] HUECKEL T, BALDI G. Thermoplastisity of saturated clays: experimental constitutive study[J]. Journal of Geotechnical Engineering, ASCE, 1990, 116(12): 1778-1796.
    [25] WANG M C, BENWAY J M, ARAYSSI A M. The effect of heating on engineering properties of clays[J]. ASTM Special Technical Publication, 1990, 1095: 139-158.
    [26] TOWHATA I, KUNTIWATTANAKUL P, KOBAYASHI H. A preliminary study on heating of clays to examine possible effects of temperature on soil-mechanical properties[J]. Soil and Foundations, 1993, 33(4): 184-190.
    [27] GRAHAM J, CHANDLER N A, DIXON D A, et al. The buffer/container experiment[R]. Atomic Energy of Canada Limited and CANDOU Owners Group, AECL-11746 and COG-97-46-I, 1996.
    [28] SEYFRIED W E Jr. Experimental and constraints on hydrothermal alteration processes at mid-ocean ridges[J]. Annual Review of Earth and Planetary Sciences, 1987, 15: 317-335.
    [29] MITCHELL J K, CAMPANELLA R G. Creep studies on saturated clays[J]. ASTM Special Technical Publications, 1963, 361: 90-110.
    [30] BERGENSTAHL L, GABRIELSSON A, MULABDIC M. Changes in soft clay caused by increases in temperature[C]// Proceedings of 13th International Conference on Soil Mechanics and Foundation Engineering, 1994: 1637-1640.
    [31] LINGUAU B. Consolidated undrained-triaxial behavior of a sand-bentonite mixture at elevated temperature[D]. Manitoba: The University of Manitoba, 1993.
    [32] KUNTIWATTANAKUL P, TOWHATA I, OHISHI K, et al. Temperature effects on undrained shear characteristics on clay[J]. Soils and Foundations, 1995, 35(1): 427-441.
    [33] DE-BRUYN D, THIMUS J. The influence of temperature on mechanical characteristics of Boom clay: the results of an initial laboratory programme[J]. Engineering Geology, 1996, 41(1/2/3/4): 117-126.
    [34] DELAGE P, SULTAN N, CUI Y J. On the thermal consolidation of boom clay[J]. Canadian Geotechnical Journal, 2000, 37(3): 343-354.
    [35] ANUCHIT U. Experimental investigation and constitutive modeling of thermo-hydro-mechanical coupling in unsaturated soils[D]. Sydney: the University of New South Wales, 2005.
    [36] 陈正汉, 谢云, 孙树国, 等. 温控土工三轴仪的研制及其应用[J]. 岩土工程学报, 2005, 27(8): 928-933. (CHEN Zheng-han, XIE Yun, SUN Shu-guo, et al. Temperature controlled triaxial apparatus for soils and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 928-933. (in Chinese))
    [37] PAASWELL R. Temperature effects on clay soil consolidation[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 93(3): 9-22.
    [38] 叶为民, 张亚为, 陈宝, 等. 温控非饱和高压固结试验系统研制进展[C]// 第三届废物地下处置学术研讨会论文集. 杭州, 2010: 385-393. (YE Wei-min, ZHANG Ya-wei, CHEN Bao, et al. Advances on development of suction and temperatre controlled oedometer cell[C]// Proceedings of The Third Conference on Underground Disposal of the Waste. Hangzhou, 2010: 385-393. (in Chinese))
计量
  • 文章访问数:  356
  • HTML全文浏览量:  3
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-06
  • 发布日期:  2015-05-19

目录

    /

    返回文章
    返回