• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱水灰岩巴西试验准静态加载应变率效应研究

黄彦华, 杨圣奇

黄彦华, 杨圣奇. 饱水灰岩巴西试验准静态加载应变率效应研究[J]. 岩土工程学报, 2015, 37(5): 802-811. DOI: 10.11779/CJGE201505005
引用本文: 黄彦华, 杨圣奇. 饱水灰岩巴西试验准静态加载应变率效应研究[J]. 岩土工程学报, 2015, 37(5): 802-811. DOI: 10.11779/CJGE201505005
HUANG Yan-hua, YANG Sheng-qi. Quasi-static loading strain rate effects on saturated limestone based on Brazilian splitting test[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 802-811. DOI: 10.11779/CJGE201505005
Citation: HUANG Yan-hua, YANG Sheng-qi. Quasi-static loading strain rate effects on saturated limestone based on Brazilian splitting test[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 802-811. DOI: 10.11779/CJGE201505005

饱水灰岩巴西试验准静态加载应变率效应研究  English Version

基金项目: 国家自然科学基金项目(41272344,51323004); 国家重点基础研究发展计划(973计划)项目(2014CB046905); 教育部新世纪优秀人才支持计划项目(NCET-12-0961); 2014年江苏省双创团队项目
详细信息
    作者简介:

    黄彦华(1989- ),男,福建龙岩人,硕士研究生,主要从事断续裂隙岩石力学试验与模拟方面的研究工作。E-mail: huangyh1219@163.com。

    通讯作者:

    杨圣奇

Quasi-static loading strain rate effects on saturated limestone based on Brazilian splitting test

  • 摘要: 通过对饱水灰岩进行不同加载应变率巴西试验、实时声发射监测以及破裂面扫描电镜观察,试验研究了应变率对饱水灰岩强度及破裂机制的影响。结果表明:①饱水对灰岩强度有明显的弱化作用,其拉伸强度值与干燥时相比降低了约15.99%;②声发射特征会受到加载速率的影响,试样中出现最大声发射事件数会随着应变率的增大而增大;③较低应变率(3.0×10-4s-1和9.0×10-4s-1)时灰岩破裂细观机制为沿晶破裂模式,宏观上拉伸强度较低;当应变率增大至1.5×10-3s-1时细观上为沿晶与穿晶耦合断裂模式,宏观上拉伸强度较高,而应变率为1.0×10-2s-1时细观上为穿晶断裂模式,宏观上拉伸强度最高。基于试验结果,采用三维颗粒流(PFC3D)分析了饱水灰岩加速速率效应细观机理。模拟显示,较低应变率下荷载-位移曲线表现为脆性,而随着应变率的提高曲线延性增大。灰岩拉伸强度随着应变率的提高近似线性增大。边界能与拉伸强度呈现为正比关系,灰岩破坏所消耗的能量与微裂纹数均随着应变率增大而增加。
    Abstract: Based on the Brazilian splitting test, real-time acoustic emission (AE) monitoring and SEM observations, the influences of strain rate on tensile strength and deformation failure mechanism of saturated limestone specimens are investigated. The results show that: (1) Compared with the dry specimen, the tensile strength of saturated specimens has a reducing tendency and the decrease extent is about 15.99%. (2) The AE characteristics are also affected by the strain rate, i.e., the number of AE events increases as strain rate increases. (3) When the strain rate is smaller (3.0×10-4s-1 and 9.0×10-4s-1), the failure mechanism of saturated limestone specimens is that the crack propagates between mineral particles, thus the tensile strength is the smallest. When the strain rate increases to 1.5×10-3s-1, the failure mechanism is coupled of being penetrated and penetrating along mineral particles, so the tensile strength is medium. However, when the strain rate equals to 1.0×10-2s-1, the failure mechanism begins to penetrate mineral particles, then the tensile strength is the largest. Based on the experimental results, a discrete element method (DEM) PFC3D is used to analyze the meso-mechanism of strain rate effects. According the simulation results, the following conclusions can be drawn: the load-displacement curves are brittle when the strain rate is small. When the strain rate is high, the load-displacement curves show a ductile response. The tensile strength increases linearly with the increasing strain rate. The boundary energy is positively correlated with the tensile strength, i.e., the larger the boundary, the higher the tensile strength. The energy of sample failure at the high strain rate and the number of micro-cracks are all greater than those at the low rate.
  • [1] 杨仕教, 曾晟, 王和龙. 加载速率对石灰岩力学效应的试验研究[J]. 岩土工程学报, 2005, 27(7): 786-788. (YANG Shi-jiao, ZENG Sheng, WANG He-long. Experimental analysis on mechanical effects of loading rates on limestone[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 786-788. (in Chinese))
    [2] 黄达, 黄润秋, 张永兴. 粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究[J]. 岩石力学与工程学报, 2012, 31(2): 245-255. (HUANG Da, HUANG Run-qiu, ZHANG Yong-xing. Experimental investigations on static loading rate effects on mechanical properties and energy mechanism of coarse crystal grain marble under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 245-255. (in Chinese))
    [3] 周辉, 杨艳霜, 肖海斌, 等. 硬脆性大理岩单轴抗拉强度特性的加载速率效应研究—试验特征与机制[J]. 岩石力学与工程学报, 2013, 32(9): 1868-1875. (ZHOU Hui, YANG Yan-shuang, XIAO Hai-bin, et al. Research on loading rate effect of tensile strength of hard brittle marble—test characteristics and mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1868-1875. (in Chinese))
    [4] LIANG W G, ZHAO Y S, XU S G, et al. Effect of strain rate on the mechanical properties of salt rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 161-167.
    [5] 李战鲁, 王启智. 加载速率对岩石动态断裂韧度影响的实验研究[J]. 岩土工程学报, 2006, 28(12): 2116-2120. (LI Zhan-lu, WANG Qi-zhi. Experimental research on effect of loading rate for dynamic fracture toughness of rock[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2116-2120. (in Chinese))
    [6] 宫能平, 罗裕繁, 高远. 加载速率对岩石动态断裂韧度影响的试验[J]. 上海交通大学学报, 2012, 46(10): 1570-1572. (GONG Neng-ping, LUO Yu-fan, GAO Yuan. Experimental study on the effect of loading rate for dynamic fracture toughness of rock[J]. Journal of Shanghai Jiaotong University, 2012, 46(10): 1570-1572. (in Chinese))
    [7] GONG F Q, ZHAO G F. Dynamic indirect tensile strength of sandstone under different loading rates[J]. Rock Mechanics and Rock Engineering, 2014, 47: 2271-2278.
    [8] 张连英, 茅献彪. 高温状态下加载速率对石灰岩力学效应研究[J]. 岩土力学, 2010, 31(11): 3511-3515. (ZHANG Lian-ying, MAO Xian-biao. Experimental study of the mechanical effects of loading rates on limestone at high temperature[J]. Rock and Soil Mechanics, 2010, 31(11): 3511-3515. (in Chinese))
    [9] TANG F, MAO X, ZHANG L, et al. Effects of strain rates on mechanical properties of limestone under high temperature[J]. Mining Science and Technology (China), 2011, 21(6): 857-861.
    [10] 苏海健, 靖洪文, 赵洪辉. 高温后砂岩单轴压缩加载速率效应的试验研究[J]. 岩土工程学报, 2014, 36(6): 1064-1071. (SU Hai-jian, JING Hong-wen, ZHAO Hong-hui. Experimental investigation on loading rate effect of sandstone after high temperature under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1064-1071. (in Chinese))
    [11] 许金余, 刘石. 加载速率对高温后大理岩动态力学性能的影响研究[J]. 岩土工程学报, 2013, 35(5): 879-883. (XU Jin-yu, LIU Shi. Effect of impact velocity on dynamic mechanical behaviors of marble after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 879-883. (in Chinese))
    [12] HAWKIN A B, MCCONNELL B J. Sensitivity of sandstone strength and deformability to changes in moisture content[J]. Quarterly Journal of Engineering Geology, 1992, 25(2): 115-130.
    [13] VÁSÁRHELYI B. Some observations regarding the strength and deformability of sandstones in case of dry and saturated conditions[J]. Bulletin of Engineering Geology and the Environment, 2003, 62(3): 245-249.
    [14] VÁSÁRHELYI B, VÁN P. Influence of water content on the strength of rock[J].Engineering Geology, 2006, 84(1):70-74.
    [15] ERGULER Z A, ULUSAY R. Water-induced variations in mechanical properties of clay-bearing rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 355-370.
    [16] 熊德国, 赵忠明, 苏承东, 等. 饱水对煤系地层岩石力学性质影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 998-1006. (XIONG De-guo, ZHAO Zhong-ming, SU Cheng-dong, et al. Experimental study of effect of water- saturated state on mechanical properties of rock in coal measure strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 998-1006. (in Chinese))
    [17] 王斌, 李夕兵. 单轴荷载下饱水岩石静态和动态抗压强度的细观力学分析[J]. 爆破与冲击, 2012, 32(4): 423-431. (WANG Bin, LI Xi-bing. Mesomechanics analysis of static compressive strength and dynamic compressive strength of water-saturated rock under uniaxial load[J]. Explosion and Shock Waves, 2012, 32(4): 423-431. (in Chinese))
    [18] 陈旭, 俞缙, 李宏, 等. 不同岩性及含水率的岩石声波传播规律试验研究[J]. 岩土力学, 2013, 34(9): 2527-2533. (CHEN Xu, YU Jin, LI Hong, et al. Experimental study of propagation characteristics of acoustic wave in rocks with different lithologies and water contents[J]. Rock and Soil Mechanics, 2013, 34(9): 2527-2533. (in Chinese))
    [19] WONG L N Y, JONG M C. Water saturation effects on the brazilian tensile strength of gypsum and assessment of cracking processes using high-speed video[J]. Rock Mechanics and Rock Engineering, 2014, 47: 1103-1115.
    [20] WASANTHA P L P, RANJITH P G. Water-weakening behaviour of Hawkesbury sandstone in brittle regime[J]. Engineering Geology, 2014, 178: 91-101.
    [21] SL 264—2001 水利水电工程岩石试验规程[S]. 2001. (SL 264—2001 Specifications for rock tests in water conservancy and hydroelectric engineering[S]. 2001. (in Chinese))
    [22] 李夕兵, 古德生. 岩石冲击动力学研究内容及其应用[J]. 西部探矿工程, 1996, 8(6): 1-2. (LI Xi-bing, GU De-sheng. Research content and application of rock impulsion dynamics[J]. West-China Exploration Engineering, 1996, 8(6): 1-2. (in Chinese))
    [23] 梁昌玉, 李晓, 李守定, 等. 岩石静态和准动态加载应变率的界限值研究[J]. 岩石力学与工程学报, 2012, 31(6): 1156-1161. (LIANG Chang-yu, LI Xiao, LI Shou-ding, et al. Study of strain rates threshold value between static loading and quasi-dynamic loading of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1156-1161. (in Chinese))
    [24] 尹小涛, 葛修润, 李春光, 等. 加载速率对岩石材料力学行为的影响[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2610-2615. (YIN Xiao-tao, GE Xiu-run, LI Chun-guang, et al. Influences of loading rates on mechanical behaviors of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2610-2615. (in Chinese))
    [25] 黄达, 岑夺丰, 黄润秋. 单裂隙砂岩单轴压缩的中等应变率效应颗粒流模拟[J]. 岩土力学, 2013, 34(2): 535-545. (HUANG Da, CEN Duo-feng, HUANG Run-qiu. Influence of medium strain rate on sandstone with a single pre-crack under uniaxial compression using PFC simulation[J]. Rock and Soil Mechanics, 2013, 34(2): 535-545. (in Chinese))
    [26] 蒋明镜, 陈贺, 刘芳. 岩石微观胶结模型及离散元数值仿真方法初探[J]. 岩石力学与工程学报, 2013, 32(1): 15-23. (JIANG Ming-jing,CHEN He,LIU Fang. A microscopic bond model for rock and preliminary study of numerical simulation method by distinct element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 15-23. (in Chinese))
    [27] YANG S Q, HUANG Y H, JING H W, et al. Discrete element modelling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression[J]. Engineering Geology, 2014, 178: 28-48.
    [28] 黄彦华, 杨圣奇. 孔槽式圆盘破坏特性与裂纹扩展机理颗粒流分析[J]. 岩土力学, 2014, 35(8): 1644-1653. (HUANG Yan-hua, YANG Sheng-qi. Particle flow simulation on fracture characteristics and crack propagation mechanism of holed-cracked Brazilian disc specimen[J]. Rock and Soil Mechanics, 2014, 35(8): 1644-1653. (in Chinese))
  • 期刊类型引用(25)

    1. 王朋飞,祝壮,孙中光,曲越,张衡,李培现. 长壁工作面开采时间间隔对倾向主断面地表沉陷的影响研究. 采矿与安全工程学报. 2025(02): 282-293 . 百度学术
    2. 丁星丞,李培现,康新亮,王明亮,张涛,郝登程. 融合概率积分法与SBAS-InSAR的开采沉陷计算方法. 矿业科学学报. 2025(01): 48-56 . 百度学术
    3. 韩春鹏,杜超,史梁,祖发金,柴晓鹤. 老采空区地表沉降预测合理监测模式分析. 工程勘察. 2024(02): 48-53 . 百度学术
    4. 张梦华. 羊东矿保护煤柱开采地表变形研究. 煤炭与化工. 2024(03): 27-29+33 . 百度学术
    5. 郭庆彪,余庆,郑美楠,罗锦. 测线布设形态与测点缺失对采煤沉陷预计参数反演的影响. 煤田地质与勘探. 2024(06): 57-68 . 百度学术
    6. 孙述海,王文斌,齐树明,姜佃卿,孙玥,岳伟佳. 新阳煤矿三、四采区地表移动变形规律研究. 资源信息与工程. 2024(04): 59-63 . 百度学术
    7. 张玮,陈迪,袁利伟,郭庆,李晨洋,李彧,李袁松,李春辉,陈明辉. 基于概率积分法的露地联采地表移动影响范围划定分析. 采矿技术. 2024(05): 12-20 . 百度学术
    8. 孙志豪,徐良骥,刘潇鹏. 一种基于分段加权赋参的厚松散层矿区沉陷预计方法. 金属矿山. 2024(11): 132-141 . 百度学术
    9. 王文才,吴周康,高小雷,王鹏. 非充分采动条件下地表移动概率积分法预测. 煤炭技术. 2023(06): 1-4 . 百度学术
    10. 杨晓玉,朱晓峻. 基于稳健遗传算法的矿山开采沉陷预计参数反演. 金属矿山. 2023(08): 237-244 . 百度学术
    11. 滕永佳,阎跃观,郭伟,姜岩,胡耀东. 不规则工作面开采地表沉陷线积分预计方法. 矿业科学学报. 2022(01): 82-88 . 百度学术
    12. 胡辉东,李贤庆,陈纯芳,刘洋,张博翔. 鄂尔多斯盆地杭锦旗地区J58井区盒一段甜点储层特征及主控因素. 矿业科学学报. 2022(01): 71-88 . 百度学术
    13. 程桦,张亮亮,姚直书,彭世龙,郭龙辉. 厚松散层薄基岩非对称开采井筒偏斜机理. 煤炭学报. 2022(01): 102-114 . 百度学术
    14. 张劲满,阎跃观,李杰卫,徐瑞瑞,王芷馨,张坤,岳彩亚. 概率积分预计参数的ENN优化算法. 金属矿山. 2022(05): 170-176 . 百度学术
    15. 周佳薇,吴鑫,刘峰. 煤矿综放开采地表移动规律. 测绘技术装备. 2022(02): 130-134 . 百度学术
    16. 黄金中,王磊,李靖宇,蒋创,滕超群,李忠,李世保. 群智能优化算法反演概率积分参数的性能比较与分析. 金属矿山. 2022(08): 173-181 . 百度学术
    17. 丁一,邓念东,姚婷,刘东海,尚慧. 地质采矿条件对铁路路基沉陷预测影响研究. 煤炭科学技术. 2022(07): 135-145 . 百度学术
    18. 李勇,贺鑫,李培现,王炳,杨中辉,张芷祺,杨可明. 煤矿地表塌陷区天眼巡查监测系统设计及应用. 煤炭工程. 2022(12): 157-163 . 百度学术
    19. 叶伟,徐良骥,张坤. 概率积分法参数反演的SAAFC模型. 金属矿山. 2021(04): 139-148 . 百度学术
    20. 李靖宇,王磊,朱尚军,滕超群,江克贵. 基于狼群算法的概率积分法模型参数反演方法研究. 中国矿业. 2020(10): 102-109 . 百度学术
    21. 陈兴达,余学祥,池深深,汪涛,陈卫卫. 基于多种群遗传算法的概率积分法参数反演. 煤矿安全. 2020(11): 50-54+60 . 百度学术
    22. 曲相屹,李学良. 长壁开采工作面地表岩移参数求取方法分析. 水力采煤与管道运输. 2019(02): 39-41 . 百度学术
    23. 李学良. 建筑物开采损害鉴定方法评价及应用. 矿山测量. 2019(04): 9-12 . 百度学术
    24. 袁鑫,王远坚,郑健,李鹏宇,胡重戎,姜岩. 基于弹性薄板理论的地表下沉预计模型. 金属矿山. 2019(10): 37-41 . 百度学术
    25. 黄晖,池深深,韩必武,刘可胜. 基于PCA-BP神经网络的概率积分法参数算法研究. 黑龙江科学. 2019(24): 1-5 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  442
  • HTML全文浏览量:  3
  • PDF下载量:  609
  • 被引次数: 41
出版历程
  • 收稿日期:  2014-09-10
  • 发布日期:  2015-05-19

目录

    /

    返回文章
    返回