• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

石英砂砾破碎过程中粒径分布的分形行为研究

张季如, 胡泳, 张弼文, 刘元志

张季如, 胡泳, 张弼文, 刘元志. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784-791. DOI: 10.11779/CJGE201505003
引用本文: 张季如, 胡泳, 张弼文, 刘元志. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784-791. DOI: 10.11779/CJGE201505003
ZHANG Ji-ru, HU Yong, ZHANG Bi-wen, LIU Yuan-zhi. Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. DOI: 10.11779/CJGE201505003
Citation: ZHANG Ji-ru, HU Yong, ZHANG Bi-wen, LIU Yuan-zhi. Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. DOI: 10.11779/CJGE201505003

石英砂砾破碎过程中粒径分布的分形行为研究  English Version

基金项目: 国家自然科学基金项目(41272334); 中央高校基本科研业; 务费专项资金项目(2012-Ⅳ-075,2014-yb-019)
详细信息
    作者简介:

    张季如(1964- ),男,教授,博士生导师,主要从事岩土工程方面的教学和科研。E-mail: zhangjr@whut.edu.cn。

  • 中图分类号: TU411

Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel

  • 摘要: 荷载作用下粒状土的颗粒破碎改变土的粒径分布,从而影响其力学特性。试验证据显示随着颗粒破碎的增加,任何初始分布的土粒都将趋向一种自相似的分形分布。为了揭示土的粒径分布的分形转变机制,利用侧限压缩试验研究高压应力下石英砂砾的粒径分布演化规律和颗粒破碎特性,基于分形模型和粒径分布实测数据研究破碎过程中粒径分布的分形行为。研究发现:颗粒破碎增长导致粒状土趋向分形分布的过程与颗粒破碎量密切相关,并可以通过增大的分形维数来描述。尽管石英砂砾的初始分布和粒径有所不同,分形维数大于2.2的粒径分布实测数据均展示了较为严格的自相似性,因而该数值可作为分形分布的分形维数下限值。研究还发现:相同破碎状态下Hardin相对破碎率小于Einav相对破碎率,但二者对应力和体应变的响应规律是一致的。颗粒破碎发展至粒径分布成为分形分布时,体应变与相对破碎率的比值将保持恒定,并且受初始分布的均匀性和颗粒大小的影响很小。这一特点可用于分形分布的识别,并意味着试验中如果粒径分布是分形的,则无须为了粒径分析而终止试验,只需测量到体应变就可估计相对破碎率。
    Abstract: The particle breakage of granular soil under loading alters the particle-size distribution (PSD) and further affects its mechanical properties. The experimental evidence shows that any initial distribution of soil particles will tend to be fractal with the development of particle breakage. In order to reveal the transformation mechanism of fractal PSD of soil, a series of confined compression tests on a quartz sand and gravel are conducted to investigate the evolution of PSD and the behavior of particle breakage under even larger compressive stress. The fractal behavior of PSD is studied during particle crushing based on a fractal model and the measured PSD data. It is found that a fractal distribution of granular soil is caused by the growth of particle breakage, which is related to the amount of particle breakage and characterized by the increase of the values of fractal dimension. Despite the different initial distributions and particle sizes of the quartz sand and gravel, the measured PSD data that the values of fractal dimension exceed to 2.2 are shown to be strictly self-similar. Therefore the value of 2.2 can be considered as the lower limit of the fractal dimension of a fractal distribution. The Hardin’s relative breakage is larger than the Einav’s relative breakage in the same breakage state, but the rule of two indexes in response to the stress and volumetric strain is consistent. Once the PSD becomes fractal during particle crushing, the ratio of volumetric strain to relative breakage remains constant and is not much affected by either the uniformity of the initial distribution or the initial particle size. This constant ratio is a useful index for the identification of a fractal distribution, and implies that the relative breakage may be estimated from the measured volumetric strain in a test if the PSD is fractal, without having to terminate the test to analyze the particle size.
  • [1] 尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. (YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese))
    [2] LEE K L, FARHOOMAND I. Compressibility and crushing of granular soils in anisotropic triaxial compression[J]. Canadian Geotechnical Journal, 1967, 4(1): 68-86.
    [3] LADE P V, YAMAMURO J. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(4): 309-316.
    [4] HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(10): 1177-1192.
    [5] EINAV I. Breakage mechanics - part Ⅰ: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6):1274-1297.
    [6] SAMMIS C G, KING G, BIEGEL R. The kinematics of gouge deformations[J]. Pure and Applied Geophysics, 1987, 125(5): 777-812.
    [7] LUZZANI L, COOP M R. On the relationship between particle breakage and the critical state of sands[J]. Soils and Foundations, 2002, 42(2): 71-82.
    [8] COOP M R, SORENSEN K K, BODAS FREITAS T, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163.
    [9] MIAO G, AIREY D. Breakage and ultimate states for a carbonate sand[J]. Géotechnique, 2013, 63(14): 1221-1229.
    [10] TURCOTTE D L. Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91(B2): 1921-1926.
    [11] 李罡, 刘映晶, 尹振宇, 等. 粒状材料临界状态的颗粒级配效应[J]. 岩土工程学报, 2014, 36(3): 452-457. (LI Gang, LIU Ying-jing, YIN Zhen-yu, et al. Grading effect on critical state behavior of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 452-457. (in Chinese))
    [12] 刘萌成, 高玉峰, 刘汉龙. 模拟堆石料颗粒破碎对强度变形的影响[J]. 岩土工程学报, 2011, 33(11): 1691-1699. (LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Effect of particle breakage on strength and deformation of modeled rockfills[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1691-1699. (in Chinese))
    [13] MUIR W D, MAEDA K. Changing grade of soil: Effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14.
    [14] TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.
    [15] 胡伟, 尹振宇, DANO C, 等. 易破碎粒状材料本构研究[J].岩土力学, 2011, 32(增刊2): 159-165. (HU Wei, YIN Zhen-yu, DANO C, et al. Constitutive study of crushable granular materials[J]. Rock and Soil Mechanics, 2011, 32(S2): 159-165. (in Chinese))
    [16] 孙逸飞, 刘汉龙, 杨贵. 考虑颗粒破碎引起级配演变的粗粒料屈服函数研究[J]. 岩土力学, 2011, 34(12): 3479-3484. (SUN Yi-fei, LIU Han-long, YANG Gui. Yielding function for coarse aggregates considering gradation evolution induced by particle breakage[J]. Rock and Soil Mechanics, 2011, 34(12): 3479-3484. (in Chinese))
    [17] 张季如, 祝杰, 黄文竞. 侧限压缩下石英砂砾的颗粒破碎特性及其分形描述[J]. 岩土工程学报, 2008, 30(6): 783-789. (ZHANG Ji-ru, ZHU Jie, HUANG Wen-jing. Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783-789. (in Chinese))
    [18] TSOUNGUI O, VALLET D, CHARMET J-C. Numerical model of crushing of grains inside two-dimensional granular materials[J]. Powder Technology, 1999, 105(1/2/3): 190-198.
    [19] MCDOWELL G R, BOLTON M D, ROBERTSON D. The fractal crushing of granular materials[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(12): 2079-2102.
计量
  • 文章访问数:  416
  • HTML全文浏览量:  39
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-20
  • 发布日期:  2015-05-19

目录

    /

    返回文章
    返回