• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

山东安丘地区软土震陷及地震产生的土层构造新启示

田洪水, 王华林, 祝介旺, 杨传成, 吕明英, 张慎河

田洪水, 王华林, 祝介旺, 杨传成, 吕明英, 张慎河. 山东安丘地区软土震陷及地震产生的土层构造新启示[J]. 岩土工程学报, 2015, 37(4): 734-740. DOI: 10.11779/CJGE201504020
引用本文: 田洪水, 王华林, 祝介旺, 杨传成, 吕明英, 张慎河. 山东安丘地区软土震陷及地震产生的土层构造新启示[J]. 岩土工程学报, 2015, 37(4): 734-740. DOI: 10.11779/CJGE201504020
TIAN Hong-shui, WANG Hua-lin, ZHU Jie-wang, YANG Chuan-cheng, LÜ Ming-ying, ZHANG Shen-he. New revelation from seismic subsidence of soft soils and earthquake-induced soil-layer deformation structures in Anqiu area, Shandong Province[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 734-740. DOI: 10.11779/CJGE201504020
Citation: TIAN Hong-shui, WANG Hua-lin, ZHU Jie-wang, YANG Chuan-cheng, LÜ Ming-ying, ZHANG Shen-he. New revelation from seismic subsidence of soft soils and earthquake-induced soil-layer deformation structures in Anqiu area, Shandong Province[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 734-740. DOI: 10.11779/CJGE201504020

山东安丘地区软土震陷及地震产生的土层构造新启示  English Version

基金项目: 国家自然科学基金项目(41272066); 国家科技支撑计划项; 目(2012BAK19B04-02)
详细信息
    作者简介:

    田洪水(1956- ),男,教授,从事土力学与地基基础、工程地质学教学与研究工作,近十年来致力于地震事件研究。E-mail: tianhongshui@126.com。

    通讯作者:

    田洪水

    王华林

New revelation from seismic subsidence of soft soils and earthquake-induced soil-layer deformation structures in Anqiu area, Shandong Province

  • 摘要: 通过地震调查、土工试验和14C测年,从沂沭断裂地震带安丘地区的全新世中—晚期湖沼相软土中,识别出了软土震陷灾害现象和地震产生的软土沉陷向斜褶曲、小尺度同震断层、狭缩-膨胀构造和震裂缝等共生土层变形构造,其中,软土沉陷向斜是直接反应震陷灾害的纵向土层变形。小尺度同震断层是地震产生的小断层,发育在沉陷向斜之下,其垂向延长0.5~1.8 m。沉陷向斜随着同震断层的产生而初现;又紧随断层向深部延伸而向下发展。地震振动使饱和软土发生触变,土质点从沉陷向斜的转折端向两翼发生流动,在此过程中,附加地震应力不断作用,结果形成了窄而深的沉陷向斜。软土震陷最大深度为1.08 m,平均震陷深度为0.68 m。推断当时的地震烈度达到Ⅷ度、震级超过M6。测得淤泥质土的14C年龄为 3901±33a B.P.,该地震事件约发生公元前19世纪。同震断层是形成震陷的重要诱导因素,这为认识软土震陷的形成机理提供了新资料;也为防治或减轻软土震陷的危害提出了新启示。因此,应重视软土下伏土层可能产生同震断层的隐患。
    Abstract: By means of seism investigation, soil test and 14C dating, disaster phenomena about seismic subsidence of soft soils and some earthquake-induced association structures of soil layers are identified in soft soils of limnetic facies during the Mid-late Holocene in the Anqiu area of Yishu fault-seismic zone, including subsidence synform folds of soft soils, small scale co-seismic faults, pinch-and-swell structures and seismic fissures, in which subsidence synforms are vertical deformations that directly reflect the seismic subsidence disaster. Small scale co-seismic faults are some little faults caused by earthquakes, with vertical lengths of 0.5~1.8 m under the subsidence synform. A subsidence synform comes at first along with producing of co-seismic faults and developes downward treading on the heels of these faults extending to the even deeper place. The earthquake vibration causes the thixotropic deformation of saturated soft soils, and soil particles flow from the hinge zone to two wings of the synform, in which the seismic additional stresses act continually, resulting in formation of the narrow and deep-seated subsidence synform. The deepest seismic subsidence of soft soils is 1.08 m, and the average depth is 0.68 m. It is estimated that the seismic intensity is VIII degree, and the earthquake magnitude is over M6.0. The formation age of the mucky soils for 3901±33a B.P. is obtained by the14C dating, so the seismic event occurred in about 19th Century B.C.. The co-seismic fault is an important factor for forming the seismic subsidence of soft soils, which provides the new information for understanding the formation mechanism of the seismic subsidence of soft soils and the new revelation for preventing or mitigating the harm of the seismic subsidence. Therefore, attention should be paid to possible hidden troubles of co-seismic faults to be produced in the underlying layer of soft soils.
  • [1] 陈希哲. 土力学地基基础[M]. 北京: 清华大学出版社, 2003: 414-419, 511-521. (CHEN Xi-zhe. Soil mechanics and geotechnical engineering[M]. Beijing: Tsinghua University Press, 2003: 414-419, 511-521. (in Chinese))
    [2] 赵明华, 俞哓. 土力学与基础工程[M]. 武汉: 武汉理工大学出版社, 2008: 42-43, 318-325. (ZHAO Ming-hua, YU Xiao. Soil mechanics and foundation engineering[M]. Wuhan: Wuhan University of Technology Press, 2008: 42-43, 318-325. (in Chinese))
    [3] 张虎臣. 淤泥地基地震触变研究[J]. 岩土工程学报, 1989, 11(3): 78-85. (ZHANG Hu-chen. Study on the earthquake thixotropy of mucky soil foundation[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(3): 78-85. (in Chinese))
    [4] 郁寿松. 石兆吉.土壤震陷试验研究[J]. 岩土工程学报, 1989, 11(4): 35-44. (YU Shou-song, SHI Zhao-ji. Experimental investigation of soil settlement due to earthquake[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(4): 35-46. (in Chinese))
    [5] 李冬, 陈培雄, 吕小飞, 等. 软土地震震陷研究现状综述[J]. 工程抗震与加固改造, 2011, 33(2): 130-135. (LI Dong, CHEN Pei-xiong, LÜ Xiao-fei, et al. Research progress summarization of soft soil earthquake subsidence[J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(2): 130-135. (in Chinese))
    [6] MONTENAT C, BARRIER P, OTT d’Estevou P. Seismites: an attempt at critical analysis and classification[J]. Sedimentary Geology, 2007, 196: 5-30.
    [7] VAN L A J. Soft-sediment deformation structures in siliciclastic sediments: an overview[J]. Geologos, 2009, 15: 3-55.
    [8] 张邦花, 田洪水, 张增奇, 等. 地质名山馒头山及其附近早寒武世古地震沉积事件研究[J]. 沉积学报, 2012, 30(6): 1021-1031. (ZHANG Bang-hua, TIAN Hong-shui, ZHANG Zeng-qi, et al. The study on paleoseismic depositional events of the famous geological mountain ‘Mantoushan’ and its vicinity in the Early Cambrian[J]. Acta Sedimentologica Sinica, 2012, 30(6): 1021-1031. (in Chinese))
    [9] QIAO Xiu-fu, SONG Tian-rui, GAO Lin-zhi, et al. Seismic sequence in carbonate rocks by vibrational liquefaction[J]. Acta Geologica Sinica, 1994, 68(1): 16-29.
    [10] 晃洪太, 李家灵, 崔昭文, 等. 郯庐活断层与1668年郯城8.5级地震灾害[J]. 海洋地质与第四纪地质, 1995, 15(3): 69-79. (CHAO Hong-tai, LI Jia-ling, CUI Zhao-wen, et al. Active faults in Tanlu fault zone and hazardsproduced by the 1668 Tancheng Earthquake ( M =8.5)[J]. Marine Geology & Quaternary Geology, 1995, 15(3): 69-79. (in Chinese))
    [11] 田洪水, 张增奇. 从郯庐地震带安丘地区地震成因土层构造认识地震破坏作用[J]. 岩土工程学报, 2005, 27(12): 1453-1457. (TIAN Hong-shui, ZHANG Zeng-qi. Understanding failure functions caused by earthquakes on the basis of seism- genesis soil-layer structures in Anqiu area, Tancheng- Lujiang seismic zone[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1453-1457. (in Chinese))
    [12] TIAN Hong-shui, ZHANG Zeng-qi, ZHANG Bang-hua, et al. Tectonic taphrogenesis and paleoseismic records from the Yishu Fault Zone in the initial stage of the Caledonian movement[J]. Acta Geologica Sinica, 2013, 87(4): 936-947.
    [13] TIAN Hong-shui, ZHANG Bang-hua, ZHANG Shen-he, et al. Neogene seismites and seismic volcanic rocks in the Linqu area, Shandong province, E China[J]. Geologos, 2014, 20(2): 125-137.
    [14] 王华林. 公元前70年诸城一昌乐地震发震构造的初步研究[J]. 地震学刊, 1990, 3: 100-103. (WANG Hua-lin. A preliminary study of the seismogenic structures of the Zhucheng-Changle earthquake in 70 BC[J]. Journal of Seismology, 1990, 3: 100-103. (in Chinese))
    [15] 宋明春, 王沛成. 山东省区域地质[M]. 济南: 山东省地图出版社, 2003: 1-970. (SONG Ming-chun, WANG Pei-cheng. Regional geology of Shandong province[M]. Jinan: Map Press of Shandong Province, 2003: 1-970. (in Chinese))
    [16] 侯万国. 应用胶体化学[M]. 北京: 科学出版社, 1998: 1-391. (HOU Wan-guo. Application of colloid chemistry[M]. Beijing: Science Press, 1998: 1-391. (in Chinese))
    [17] 李丽华, 陈轮, 高盛焱. 翠湖湿地软土触变性试验研究 [J]. 岩土力学, 2010, 31(3): 765-768. (LI Li-hua, CHEN Lun, GAO Sheng-yan. Experimental research on thixotropy of wetland soft soil in Cuihu[J]. Rock and Soil Mechanics, 2010, 31(3): 765-768. (in Chinese))
    [18] 冯增昭. 中国沉积岩[M]. 北京: 石油工业出版社, 2013: 507-615. (FENG Zeng-zhao. Chinese sedimentary rock[M]. Beijing: Petroleum Industry Press, 2013: 507-615. (in Chinese))
    [19] 翁鑫荣. 软土应力路径特性的试验研究[J]. 岩土工程学报, 2013, 35(增刊2): 825-828. (WENG Xin-rong. Experimental research on characteristics of stress path for soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 825-828. (in Chinese))
    [20] SEILACHER A. Fault-graded beds interpreted as seismites[J]. Sedimentology, 1969, 13: 155-159.
    [21] WHEELER R L. Distinguishing seismic from nonseismic soft-sediment structures: criteria from seismic-hazard analysis[C]// Ancient Seismites. Washington City: Geological Society of America Special Paper, 2002, 359: 1-11.
    [22] KNAUST D. Pinch-and-swell structures at the Middle/Upper Muschelkalk boundary (Triassic): evidence of earthquake effects (seismites) in the Germanic Basin[J]. International Journal of Earth Sciences, 2002, 90: 291-303.
    [23] 吴武军, 曾佐勋, 朱文革. 鱼嘴构造流变计研究与基于流变学的分类方案[J]. 地球科学进展, 2005, 20(9): 925-932. (WU Wu-jun, ZENG Zuo-xun, ZHU Wen-ge. Research on rheology gauge of fish-headboudin[J]. Advances in Earthscience, 2005, 20(9): 925-932. (in Chinese))
    [24] 时伟. 工程地质学[M]. 北京: 科学出版社, 2007: 1-300. (SHI Wei. Engineering geology[M]. Beijing: Science Press , 2007: 1-300. (in Chinese))
    [25] GB/T 17742—2008中国地震烈度表[S]. 2008. (GB/T 17742—2008 The Chinese seismic intensity scale[S]. 2008. (in Chinese))
    [26] 万天丰. 山东构造演化与应力场研究[J]. 山东地质, 1992, 8(2): 70-101. (WAN Tian-feng. Tectonic evolution and stress fields of Shandong province[J]. Shandong Geology, 1992, 8(2): 70-101. (in Chinese))
  • 期刊类型引用(29)

    1. 彭普,李泽,张小艳,申林方,许芸. 土质边坡的单元失效概率与失效模式研究. 工程力学. 2024(01): 193-207 . 百度学术
    2. 张亚平,李克钢,李明亮,秦庆词,王航龙. AHP-Critic法正态云模型在边坡稳定性评价中的应用. 有色金属工程. 2024(03): 146-155 . 百度学术
    3. 甘永波,李亚军,李瑞杰,秦浩东,张杰,张彬. 考虑土体强度参数随机场的横向加载管-土相互作用分析. 水利水运工程学报. 2024(02): 143-153 . 百度学术
    4. 楼晓明,孙逸玮,张蓟. 软土地基沟渠开挖诱发远处围堰失稳的实例分析. 水利水电技术(中英文). 2024(S1): 151-159 . 百度学术
    5. 明思成,仉文岗,何昱苇,陈龙龙,覃长兵. 考虑各向异性空间变异性的边坡可靠度分析. 土木与环境工程学报(中英文). 2024(04): 60-74 . 百度学术
    6. 周家文,陈明亮,瞿靖昆,胡宇翔,夏茂圃,蒋楠,李海波,范刚. 水库滑坡灾害致灾机理及防控技术研究与展望. 工程科学与技术. 2023(01): 110-128 . 百度学术
    7. 朱磊,高欣悦,万愉快,丁一民. 地震力对边坡可靠度的影响. 科学技术与工程. 2023(10): 4324-4330 . 百度学术
    8. 彭乐平,张桂银,孙鹏. 竹仔岭花岗岩矿边坡稳定性研究. 采矿技术. 2023(03): 52-56 . 百度学术
    9. 刘昆珏,随意,程晓辉,陈朝晖,普利坚. 考虑围岩参数空间变异性的连拱隧道稳定性分析. 地下空间与工程学报. 2023(03): 911-920 . 百度学术
    10. 曾勇,李亚军,严俊,田振华. 考虑土体强度参数深度依赖性的非平稳随机场边坡滑动深度和体积分析. 水资源与水工程学报. 2023(03): 174-183+192 . 百度学术
    11. 黄延,陈雪亮. 基于不同排布型式的弧形抗滑桩边坡加固效果研究. 能源与环保. 2022(04): 24-29+44 . 百度学术
    12. 许晓亮,张家富,曾林风,徐健文,史为政. 考虑网格自适应的边坡可靠性随机有限元极限分析研究. 三峡大学学报(自然科学版). 2022(06): 48-57 . 百度学术
    13. 王小龙. 多级路堑边坡地震稳定性可靠度分析. 甘肃科技. 2022(19): 9-13+17 . 百度学术
    14. 郑晓珣. 基于流固耦合的强度折减法的地下水渗流对隧道稳定性的影响研究. 能源与环保. 2022(11): 284-289 . 百度学术
    15. 缑变彩,王帆. 基于稀疏混沌多项式的边坡可靠度分析方法. 土木工程与管理学报. 2021(02): 198-204+210 . 百度学术
    16. 严柏杨,张京伍,朱德胜,葛彬,舒爽. 考虑土体不排水强度非平稳性对条形基础承载力影响的可靠度分析. 河北工程大学学报(自然科学版). 2021(01): 20-25 . 百度学术
    17. 王鹏. 不同因素对填筑路堤边坡稳定性影响分析. 黑龙江交通科技. 2021(04): 73-75 . 百度学术
    18. 刘辉,郑俊杰,章荣军. 考虑不排水抗剪强度空间变异性的黏土边坡系统失效概率分析. 岩土力学. 2021(06): 1529-1539 . 百度学术
    19. 孙志豪,谭晓慧,孙志彬,林鑫,姚玉川. 基于上限分析的空间变异土质边坡可靠度. 岩土力学. 2021(12): 3397-3406 . 百度学术
    20. 孙锐,杨峰,阳军生,赵乙丁,郑响凑,罗静静,姚捷. 基于二阶锥规划与高阶单元的自适应上限有限元研究. 岩土力学. 2020(02): 687-694 . 百度学术
    21. 易红卫,樊陵姣,谌涛. 基于有限元分析的矿山边坡自动数值建模与分析研究. 矿冶工程. 2020(03): 30-33 . 百度学术
    22. 陈朝晖,黄凯华. 土质边坡可靠性分析的分层非平稳随机场模型. 岩土工程学报. 2020(07): 1247-1256 . 本站查看
    23. 刘爱娟,崔玉龙,刘铁新. 地震边坡动态临界加速度计算中抗剪强度参数概率分布分析. 地震工程学报. 2020(05): 1179-1186 . 百度学术
    24. 张云雁. 基于GS-SVM的边坡稳定性预测模型. 水利水电技术. 2020(11): 205-209 . 百度学术
    25. 黄俊,赵江,段祥睿,张洁. 基于强度折减法的抗滑桩加固边坡可靠度分析. 土木与环境工程学报(中英文). 2020(06): 11-18 . 百度学术
    26. 曾韬睿,王林峰,朱洪州. 基于修正的传递系数法的粉土质边坡冻融稳定性分析. 科学技术与工程. 2019(09): 206-213 . 百度学术
    27. 李泽发,吴震宇,卢祥,裴亮,杨哲. 抗拉强度空间变异性对重力坝地震开裂的影响分析. 工程科学与技术. 2019(04): 116-124 . 百度学术
    28. 梁庆国,房军,张晋东,张延杰,蒲建军,王飞. 兰州轨道交通扰动场地黄土浸水试验研究. 地质力学学报. 2018(06): 803-812 . 百度学术
    29. 吴志轩,杨军,邱天琦,沈兆普,梁宇钒. 基于FELA的随机场方法在考虑降雨入渗的边坡开挖稳定性分析中的应用. 地质力学学报. 2018(06): 813-821 . 百度学术

    其他类型引用(46)

计量
  • 文章访问数:  416
  • HTML全文浏览量:  1
  • PDF下载量:  108
  • 被引次数: 75
出版历程
  • 收稿日期:  2014-08-03
  • 发布日期:  2015-05-05

目录

    /

    返回文章
    返回