• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

透壁式通风管-块石复合路基降温效果模型试验及数值模拟

刘戈, 汪双杰, 孙红, 袁堃, 李金平

刘戈, 汪双杰, 孙红, 袁堃, 李金平. 透壁式通风管-块石复合路基降温效果模型试验及数值模拟[J]. 岩土工程学报, 2015, 37(2): 284-291. DOI: 10.11779/CJGE201502011
引用本文: 刘戈, 汪双杰, 孙红, 袁堃, 李金平. 透壁式通风管-块石复合路基降温效果模型试验及数值模拟[J]. 岩土工程学报, 2015, 37(2): 284-291. DOI: 10.11779/CJGE201502011
LIU Ge, WANG Shuang-jie, SUN Hong, YUAN Kun, LI Jin-ping. Model test and numerical simulation of cooling effect of ventilated duct-crashed rock composite embankment[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 284-291. DOI: 10.11779/CJGE201502011
Citation: LIU Ge, WANG Shuang-jie, SUN Hong, YUAN Kun, LI Jin-ping. Model test and numerical simulation of cooling effect of ventilated duct-crashed rock composite embankment[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 284-291. DOI: 10.11779/CJGE201502011

透壁式通风管-块石复合路基降温效果模型试验及数值模拟  English Version

基金项目: 国家重点基础研究发展计划(973计划)项目(2012CB026106); 国家科技支撑计划项目(2014BAG05B03); 中交集团重大科技项目(2007-ZJKJ-07)
详细信息
    作者简介:

    刘 戈(1979- ),男,博士,高级工程师,主要从事公路工程及冻土工程科研工作。E-mail: liuge1994@sohu.com。

  • 中图分类号: TU47

Model test and numerical simulation of cooling effect of ventilated duct-crashed rock composite embankment

  • 摘要: 为研究透壁式通风管-块石复合气冷路基的降温效果,针对年均气温-3.5℃,平均风速2.5 m/s,主导风向为西北方向的高原环境条件开展了室内模型试验,对比分析了单一块石路基和透壁式通风管-块石复合路基的孔隙空气对流速度、特征点地温及模型整体温度场变化过程。试验结果表明:在透壁式通风管的疏导作用下,通风管与块石层复合结构能够起到强化路基体对流的效果,复合路基块石孔隙中的空气流速比单一块石路基提高约20%,使得复合路基模型底部的降温幅度是单一块石路基模型的2.2倍。建立了透壁式通风管-块石复合路基数值计算模型,对通风管内空气流速分布、路基温度场变化进行了预测分析。结果表明:空气流速在通风管中心达到最大值4.06 m/s,在管壁处流速出现跃变陡降,在块石介质区域里速度的数量级为10-1,与室内试验的结果较为一致。模型试验和数值计算结果均表明复合路基能够起到储存冷量、降低下伏多年冻土地温的作用。
    Abstract: In order to study the cooling effect of ventilated duct-crashed rock composite embankment, a series of model tests are carried out under plateau environment conditions. The average annual temperature is -3.5℃, the average wind speed is 2.5 m/s, and the dominant wind direction is northwest. The air convection velocity in crashed rock, the change process of temperature at feature points and the temperature field of model are analyzed. The results indicate that an enhanced convection effect in embankment can be generated by the ventilated duct-crashed rock composite embankment. Under the effect of grooming by the ventilated duct, the air convection velocity in the composite embankment is 20% higher than that in a single crashed rock embankment, and the cooling rate at the bottom of the model of the composite embankment is 2.2 times that of the single crashed rock embankment. A numerical model for the ventilated duct-crashed rock composite embankment is established. The velocity distribution in the ventilated duct-embankment temperature field is analyzed. Numerical calculations show that the air flow rate which reaches a maximum at the center vent pipe is 4.06 m/s. A rapid decline in velocity occurs at the wall of the ventilated duct. The magnitude of the air flow in the crashed rock is 10-1. The calculated results are consistent with those of laboratory tests. The model test and numerical simulaton show that the composite embankments can deposit cold quantity and cool down the permafrost.
  • [1] 刘永智, 吴青柏, 张建明, 等. 青藏高原多年冻土地区公路路基变形[J]. 冰川冻土, 2002, 24(1): 10-15. (LIU Yong-zhi, WU Qing-bai, ZHANG Jian-ming, et al. Deformation of highway roadbed in permafrost regions of the Tibetan plateau[J]. Journal of Glaciology and Geocryology, 2002, 24(1): 10-15. (in Chinese))
    [2] 原喜忠. 大兴安岭北部多年冻土地区路基沉陷研究[J]. 冰川冻土, 1999, 21(2): 155-158. (YUAN Xi-zhong. Study on thaw settlement of subgrade in permafrost regions in the northern part of da hinggan mountains[J]. Journal of Glaciology and Geocryology, 1999, 21(2): 155-158. (in Chinese))
    [3] LAI Y M, GUO H X, DONG Y H. Laboratory investigation on the cooling effect of the embankment with L-shaped thermosyphon and crushed rock revetment in permafrost regions[J]. Cold Regions Science and Technology, 2009, 58(3): 143-150.
    [4] ZHANG M Y, LAI Y M, DONG Y H. Numerical study on temperature characteristics of expressway embankment with crushed rock revetment and ventilated ducts in warm permafrost regions[J]. Cold Regions Science and Technology, 2009, 59(1): 19-24.
    [5] CHENG G D, SUN Z Z, NIU F J. Application of the roadbed cooling approach in Qinghai-Tibet Railway engineering[J]. Cold Regions Science and Technology, 2008, 53(3): 241-258.
    [6] 汪双杰, 黄晓明, 陈建兵, 等. 无动力热棒冷却冻土路基研究[J]. 公路交通科技, 2005, 22(3): 1-4. (WANG Shuang-jie, HUANG Xiao-ming, CHEN Jian-bing, et al. Research on frozen soil subgrade cooling by non-power heat pipe[J]. Journal of Highway and Transportation Research and Development, 2005, 22(3): 1-4. (in Chinese))
    [7] 牛富俊, 马巍, 赖远明. 青藏铁路北麓河试验段通风管路基工程效果初步分析[J]. 岩石力学与工程学报, 2003, 22(增刊2): 2652-2658. (NIU Fu-jun, MA Wei, LAI Yuan-ming. Preliminary analysis on engineering effect of ventilation embankment at beiluhe testing section of QingHai-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2652-2658. (in Chinese))
    [8] 喻文兵, 赖远明, 张学富, 等. 多年冻土区道碴、通风管结构铁路路基室内试验研究[J]. 岩土工程学报, 2003, 25(4): 436-440. (YU Wen-bing, LAI Yuan-ming, ZHANG Xue-fu, et al. Laboratory experiment study on the ballast and ventilated railway embankment in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 436-440. (in Chinese))
    [9] 胡明鉴, 汪稔, 葛修润, 等. 透壁通风管对青藏铁路路基的冷却效果试验初探[J]. 岩石力学与工程学报, 2004, 23(24): 4195-4199. (HU Ming-jian, WANG Ren, GE Xiu-run, et al. An experimental study on cooling effect of the perforated ventilation pipes on Qinghai-Tibet railway roadbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4195-4199. (in Chinese))
    [10] 孙斌祥, 杨丽君, 王伟, 等. 水平透壁通风管增强封闭碎石路堤降温的累积效应[J]. 岩土工程学报, 2013, 35(2): 289-295. (SUN Bin-xiang, YANG Li-jun, WANG Wei, et al. Accumulative effect of cooling capability in air-tight crushed rock layer with horizontally embedded perforated ventilation pipes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 289-295. (in Chinese))
    [11] 何平, 程国栋, 马巍, 等. 块石通风性能实验研究[J]. 岩土工程学报, 2006, 28(6): 789-792. (HE Ping, CHENG Guo-dong, MA Wei, et al. Researches on ventilation properties of block stones layer[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 789-792. (in Chinese))
    [12] 吴青柏, 赵世运, 马巍, 等. 青藏铁路块石路基结构的冷却效果监测分析[J]. 岩土工程学报, 2005, 27(12): 1386-1390. (WU Qing-bai, ZHAO Shi-yun, MA Wei, et al. Monitoring and analysis of cooling effect of block-stone embankment for Qinghai-Tibet Railway[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1386-1390. (in Chinese))
    [13] 章金钊, 孙斌祥, 刘琦, 等. 透壁通风管路堤土体蒸发降温的试验研究[J]. 岩土力学, 2011, 32(6): 1813-1818. (ZHANG Jin-zhao, SUN Bin-xiang, LIU Qi, et al. Laboratory investigation on water evaporative cooling effect in embankment with perforated ventilation pipe[J]. Rock and Soil Mechanics, 2011, 32(6): 1813-1818. (in Chinese))
    [14] 张坤, 李东庆, 童刚强. 通风管-块石复合路基降温效果的数值分析[J]. 中国矿业大学学报, 2011, 40(1): 35-42. (ZHANG Kun, LI Dong-qing, TONG Gang-qiang. Numerical analysis of the cooling effect of an embankment with ventilated ducts and closed block stones[J]. Journal of China University of Mining &technology, 2011, 40(1): 35-42. (in Chinese))
    [15] 朱林楠. 高原冻土区不同下垫面的附面层研究[J]. 冰川冻土, 1988, 10(1): 8-14. (ZHU Lin-nan. Study of the adherent layer on different types of ground in permafrost regions on the Qinghai-Xizang plateau[J]. Journal of Glaciology and Geocryology, 1988, 10(1): 8-14. (in Chinese))
计量
  • 文章访问数:  306
  • HTML全文浏览量:  2
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-19
  • 发布日期:  2015-03-01

目录

    /

    返回文章
    返回