• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

理想弹-塑性岩体的自承载系数

张常光, 赵均海, 朱倩, 李爱国

张常光, 赵均海, 朱倩, 李爱国. 理想弹-塑性岩体的自承载系数[J]. 岩土工程学报, 2015, 37(2): 250-256. DOI: 10.11779/CJGE201502006
引用本文: 张常光, 赵均海, 朱倩, 李爱国. 理想弹-塑性岩体的自承载系数[J]. 岩土工程学报, 2015, 37(2): 250-256. DOI: 10.11779/CJGE201502006
ZHANG Chang-guang, ZHAO Jun-hai, ZHU Qian, LI Ai-guo. Self-bearing capacity coefficient of ideal elastic-plastic rock mass[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 250-256. DOI: 10.11779/CJGE201502006
Citation: ZHANG Chang-guang, ZHAO Jun-hai, ZHU Qian, LI Ai-guo. Self-bearing capacity coefficient of ideal elastic-plastic rock mass[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 250-256. DOI: 10.11779/CJGE201502006

理想弹-塑性岩体的自承载系数  English Version

基金项目: 国家自然科学基金项目(41202191); 中国博士后科学基金项目(2014M562358); 中央高校基本科研业务费专项基金项目(2013G2283007,2014G1281072)
详细信息
    作者简介:

    张常光(1982- ),男,山东菏泽人,博士,副教授,从事非饱和土与地下工程等研究。E-mail: zcg1016@163.com。

  • 中图分类号: TU47

Self-bearing capacity coefficient of ideal elastic-plastic rock mass

  • 摘要: 针对岩体自身承载能力的评价,修改抗力系数提出了岩体新的自承载系数,给出其物理意义,并以理想弹-塑性围岩中圆孔收缩和扩张为例,推导了岩体缩孔自承载系数Kc和扩孔自承载系数Ke,得出各参数的影响特性。研究结果表明:岩体自承载系数是一个受多因素共同影响的综合评价指标,应力状态和孔壁压力对其具有显著影响;岩体自承载系数随岩体强度参数和统一强度理论参数的增加而增大,随剪胀参数的增加岩体缩孔自承载系数Kc减小,而扩孔自承载系数Ke却增大。应充分考虑岩体强度参数的变化、中间主应力效应和剪胀特性的影响,合理利用岩体的强度潜能和自承载能力。
    Abstract: By revising the resistance coefficient, a new self-bearing capacity coefficient of rock mass is proposed in this study to evaluate the bearing capacity of rock mass, and its physical meaning is also given. A circular opening in the ideal elastic-plastic rock mass is taken as an example to derive the self-bearing capacity coefficients Kc under contraction and Ke under expansion, and parametric studies are discussed. The obtained results show that the self-bearing capacity coefficient of rock mass is a comprehensive evaluation index by multiple factors, which is significantly influenced by stress state and wall pressure, and increases with strength parameters of rock mass and the unified strength theory parameter. With the increase of the dilation parameter, the coefficient Kc decreases, whereas the coefficient Ke increases. The effects of changes in strength parameters of rock mass, intermediate principal stress and dilatancy should be fully considered in order to take full advantage of the latent potentialities of rock mass.
  • [1] 蒋明镜, 沈珠江. 岩土类软化材料的柱形孔扩张统一解问题[J]. 岩土力学, 1996, 17(1): 1-8. (JIANG Ming-jing, SHEN Zhu-jiang. Unified solution of expansion of cylindrical cavity for geometries with strain softening behaviour[J]. Rock and Soil Mechanics, 1996, 17(1): 1-8. (in Chinese))
    [2] 栾茂田, 李波. 基于广义SMP破坏准则的柱形孔扩张问题理论分析[J]. 岩土力学, 2006, 27(12): 2105-2110. (LUAN Mao-tian, LI Bo. Theoretical analysis of cylindrical cavity expansion based on extended SMP criterion[J]. Rock and Soil Mechanics, 2006, 27(12): 2105-2110. (in Chinese))
    [3] CAI G J, LIU S Y, PUPPALA A J. Assessment of soft clay ground improvement from SCPTU results[J]. Proceedings of the ICE-Geotechnical Engineering, 2012, 165(2): 83-95.
    [4] MARSHALL A M. Tunnel-pile interaction analysis using cavity expansion methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2012, 138(10): 1237-1246.
    [5] XU S Q, YU M H. The effect of the intermediate principal stress on the ground response of circular openings in rock mass[J]. Rock Mechanics and Rock Engineering, 2006, 39(2): 169-181.
    [6] SHARAN S K. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(1): 78-85.
    [7] CHEN R, TONON F. Closed-form solutions for a circular tunnel in elastic-brittle-plastic ground with the original and generalized Hoek-Brown failure criteria[J]. Rock Mechanics and Rock Engineering, 2011, 44(2): 169-178.
    [8] ZHANG C G, ZHAO J H, ZHANG Q H, et al. A new closed-form solution for circular openings modeled by the Unified Strength Theory and radius-dependent Young’s modulus[J]. Computers and Geotechnics, 2012, 42: 118-128.
    [9] 张常光, 赵均海, 张庆贺. 基于统一强度理论的深埋圆形岩石隧道收敛限制分析[J]. 岩土工程学报, 2012, 34(1): 110-114. (ZHANG Chang-guang, ZHAO Jun-hai, ZHANG Qing-he. Convergence-confinement analysis of deep circular rock tunnels based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 110-114. (in Chinese))
    [10] 蔡晓鸿, 蔡勇平. 水工压力隧洞结构应力计算[M]. 北京: 中国水利水电出版社, 2004. (CAI Xiao-hong, CAI Yong-ping. Structure stress calculation for hydraulic pressure tunnel[M]. Beijing: China Water Power Press, 2004. (in Chinese))
    [11] 马青, 赵均海, 魏雪英. 基于统一强度理论的巷道围岩抗力系数研究[J]. 岩土力学, 2009, 30(11): 3393-3398. (MA Qing, ZHAO Jun-hai, WEI Xue-ying. Investigation of rock resistant coefficient in rocks around tunnel based on unified strength theory[J]. Rock and Soil Mechanics, 2009, 30(11): 3393-3398. (in Chinese))
    [12] 朱建明, 彭新坡, 徐金海. 基于SMP准则的衬砌隧道围岩抗力系数的计算[J]. 岩土工程学报, 2011, 33(5): 700-704. (ZHU Jian-ming, PENG Xin-po, XU Jin-hai. Determination of rock resistant coefficient in lining tunnels based on SMP failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 700-704. (in Chinese))
    [13] 赵均海, 李爱国, 张常光. 圆形隧道弹-脆-塑性围岩自承载能力分析[J]. 中国公路学报, 2014, 27(4): 85-90. (ZHAO Jun-hai, LI Ai-guo, ZHANG Chang-guang. Self-carrying capacity of surrounding rock for a circular tunnel based on the elastic-brittle-plastic model[J]. China Journal of Highway and Transport, 2014, 27(4): 85-90. (in Chinese))
    [14] 俞茂宏. 双剪理论及其应用[M]. 北京: 科学出版社, 1998. (YU Mao-hong. Twin-shear theory and its application[M]. Beijing: Science Press, 1998. (in Chinese))
    [15] 俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 1-10. (YU Mao-hong. Unified strength theory for geomaterials and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. (in Chinese))
计量
  • 文章访问数:  352
  • HTML全文浏览量:  7
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-30
  • 发布日期:  2015-03-01

目录

    /

    返回文章
    返回