• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

UH模型系列研究

姚仰平

姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. DOI: 10.11779/CJGE201502001
引用本文: 姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. DOI: 10.11779/CJGE201502001
YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. DOI: 10.11779/CJGE201502001
Citation: YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. DOI: 10.11779/CJGE201502001

UH模型系列研究  English Version

基金项目: 国家重点基础研究发展计划(973计划)(2014CB047000); 国家自然科学基金项目(11272031)
详细信息
    作者简介:

    姚仰平(1960- ),男,陕西蓝田人,博士,教授,国家973计划首席科学家,从事土的本构建模、本构模型的工程应用、机场高填方变形与稳定控制等方面的科研工作。E-mail: ypyao@buaa.edu.cn。

  • 中图分类号: TU47

Advanced UH models for soils

  • 摘要: 岩土材料的本构模型是岩土工程学科的重要理论基础。合理的本构模型既能定性地揭示岩土的变形强度机制,也能定量地进行岩土体强度和变形计算。笔者20余年来潜心于土的本构模型研究,取得了以下3个方面的理论成果:①在修正剑桥模型的基础上,通过引入统一硬化(unified hardening,UH)参数,建立UH模型,该本构模型能够反映饱和超固结土的剪缩、剪胀、硬化、软化和应力路径相关性等特性,模型所用土性参数与修正剑桥模型完全相同;②扩展UH模型,使其考虑多种外部因素(温度、时间和基质吸力)、复杂特性(各向异性、结构性和小应变特性)和复杂加载条件(循环荷载、部分排水即渐近状态)等的影响;③提出广义非线性强度准则和满足热力学定律的变换应力三维化方法,从而实现了本构模型的合理三维化。UH模型已被嵌入到数值计算软件中,并被用于分析岩土工程问题。以上研究包括本构建模、强度准则、三维化方法和数值分析等方面,形成了独具特色的岩土本构理论和应用体系。
    Abstract: The constitutive model for geomaterials is the important theoretical basis of geotechnical engineering. An advanced constitutive model can qualitatively reveal deformation and strength mechanisms of geomaterials, and also quantitatively calculate the deformation and strength. The author has been devoted to the constitutive model for geomaterials for more than twenty years and obtained the following theoretical achievements: (1) The unified hardening (UH) model is established. Using the same soil parameters with the Cam-clay model, the UH model can describe shear contraction and dilatation, strain hardening and softening as well as stress-path-dependency of saturated overconsolidated clay. (2) The UH model is extended to consider influences of some external factors (temperature, time and suction), complicated characteristics (anisotropy, structural and small-strain properties) and complicated loading paths (cyclic loading, and various drainage conditions, namely asymptotic states). (3) The generalized nonlinear strength criterion and the transformed stress method satisfying the thermodynamic laws are proposed in order to generalize reasonably the constitutive model to the three-dimensional stress space. The UH model has been embedded into the commercial numerical analysis software and applied to the geotechnical engineering analysis. This research framework involves constitutive modeling, strength criterion, generalizing method and numerical analysis, forming a unique constitutive theoretical and applicable system.
  • [1] 姚仰平, 侯伟. 土的基本特性及其弹塑性描述[J]. 岩土力学, 2009, 30(10): 2881-2902. (YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. Rock and Soil Mechanics, 2009, 30(10): 2881-2902. (in Chinese))
    [2] 姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. (YAO Yang-ping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese))
    [3] 姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报, 2012, 45(3): 127-150. (YAO Yang-ping, ZHANG Bing-yin, ZHU Jun-gao. Behaviors, constitutive models and numerical simulation of soils[J]. China Civil Engineering Journal, 2012, 45(3): 127-150. (in Chinese))
    [4] 黄文熙, 濮家骝, 陈愈炯. 土的硬化规律和屈服函数[J]. 岩土工程学报, 1981, 3(3): 19-26. (HUANG Wen-xi, PU Jia-liu, CHEN Yu-jiong. Hardening rule and yield function for soils[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(3): 19-26. (in Chinese))
    [5] 沈珠江. 黏土的双硬化模型[J]. 岩土力学, 1995, 16(1): 1-8. (SHEN Zhu-jiang. A double hardening model for clays[J]. Rock and Soil Mechanics, 1995, 16(1): 1-8. (in Chinese))
    [6] 郑颖人, 孔亮. 塑性力学中的分量理论——广义塑性力学[J]. 岩土工程学报, 2000, 22(3): 269-274. (ZHENG Ying-ren, KONG Liang. Componental plastic mechanics——generalized plastic mechanics[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 269-274. (in Chinese))
    [7] 殷宗泽. 土体本构模型剖析[J]. 岩土工程学报, 1996, 18(4): 95-97. (YIN Zong-ze. Constitutive models for soils[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 95-97. (in Chinese))
    [8] 俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 1-10. (YU Mao-hong. Unified strength theory for geomaterials and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. (in Chinese))
    [9] 谢定义, 齐吉琳, 张振中. 考虑土结构性的本构关系[J]. 土木工程学报, 2000, 33(4): 35-41. (XIE Ding-yi, QI Ji-lin, ZHANG Zhen-zhong. A constitutive laws considering soil structural properties[J]. China Civil Engineering Journal, 2000, 33(4): 35-41. (in Chinese))
    [10] ROSCOE K H, SCHOFIELD A N, THRUAIRAJAH A. Yielding of clays in state wetter than critical[J]. Géotechnique, 1963, 13(3): 21-40.
    [11] DAFALIAS Y F. Bounding surface plasticity I: mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987.
    [12] HASHIGUCHI K. Subloading surface model in unconventional plasticity[J]. International Journal of Solids and Structures, 1989, 25(8): 917-945.
    [13] ASAOKA A, NAKANO M, NODA T. Super loading yield surface concept for highly structured soil behaviour[J]. Soils and Foundations, 2000, 40(2): 99-110.
    [14] ZHANG F, YASHIMA A, NAKAI T, et al. An elasto-viscoplastic model for soft sedimentary rock based on tij concept and subloading yield surface[J]. Soils and Foundations, 2005, 45(1): 65-73.
    [15] WU W. On high-order hypoplastic models for granular materials[J]. Journal of Engineering Mechanics, 2006, 56(1): 23-34.
    [16] YU H S. CASM: A unified state parameter model for clay and sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(8): 621-653.
    [17] SHENG D C, FREDLUND D G., GENS A. A new modelling approach for unsaturated soils using independent stress variables[J]. Canadian Geotechnical Journal, 2008, 45(4): 511-534.
    [18] 李广信. 土的清华弹塑性模型及其发展[J]. 岩土工程学报, 2006, 28(1): 1-10. (LI Guang-xin. Characteristics and development of Tsinghua Elasto-plastic Model for soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 1-10. (in Chinese))
    [19] 李相菘. 饱和土弹塑性理论的数理基础——纪念黄文熙教授[J]. 岩土工程学报, 2013, 35(1): 1-33. (LI Xiang-song. Physical and mathematical bases of elastoplastic theories on saturated soils—In memory of Professor HUANG Wen-xi [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 1-33 (in Chinese))
    [20] 殷建华. 从本构模型研究到试验和光纤监测技术研发[J]. 岩土工程学报, 2011, 33(1): 1-15. (YIN Jian-hua. From constitutive modeling to development of laboratory testing and optical fiber sensor monitoring technologies[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 1-15. (in Chinese))
    [21] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. (CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese))
    [22] 张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50. (ZHANG Jian-min. New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50. (in Chinese))
    [23] 刘汉龙, 丰土根, 高玉峰, 等. 砂土多机构边界面塑性模型及其试验验证[J]. 岩土力学, 2003, 24(5): 696-700. (LIU Han-long, FENG Tu-gen, GAO Yu-feng, et al. Multiple mechanism boundary surface plasticity model of saturated sand and its test validation[J]. Rock and Soil Mechanics, 2003, 24(5): 696-700. (in Chinese))
    [24] 黄茂松, 扈萍, 张宏博. 考虑剪胀性和应变软化的粉细砂双屈服面本构模型[J]. 水利学报, 2008, 39(2): 129-136. (HUANG Mao-song, HU Ping, ZHANG Hong-bo. Two-yield surface constitutive model for fine sand in consideration of dilatancy and strain softening[J]. Journal of Hydraulic Engineering, 2008, 39(2): 129-136. (in Chinese))
    [25] 蒋明镜, 刘静德, 孙渝刚. 基于微观破损规律的结构性土本构模型[J]. 岩土工程学报, 2013, 35(6): 1134-1139. (JIANG Ming-jing, LIU Jing-de, SUN Yu-gang. Constitutive model for structured soils based on microscopic damage law[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1134-1139. (in Chinese))
    [26] 赵成刚, 尤昌龙. 饱和砂土液化与稳态强度[J]. 土木工程学报, 2001, 34(3): 90-96. (ZHAO Cheng-gang, YOU Chang-long. Liquefaction and steady sate strength[J]. China Civil Engineering Journal, 2001, 34(3): 90-96. (in Chinese))
    [27] 杨光华, 姚捷, 温勇. 考虑拟弹性塑性变形的土体弹塑性本构模型[J]. 岩土工程学报, 2013, 35(8): 1496-1503. (YANG Guang-hua, YAO Jie, WEN Yong. Elastic-plastic model for soils considering quasi-elastic-plastic deformation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1496-1503. (in Chinese))
    [28] ROSCOE K H, SCHOFIELD A N. Mechanical behaviour of an idealised 'wet clay'[C]//Proceedings of the 2nd European Conference on Soil Mechanics and Foundations Engineering. Wiesbaden, 1963: 47-54.
    [29] 姚仰平, 祝恩阳. 基于耦合应力建立土本构模型的方法[J]. 岩土工程学报, 2010, 32(12): 1922-1929. (YAO Yang-ping, ZHU En-yang. Establishing soil constitutive model based on coupling stress[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1922-1929. (in Chinese))
    [30] ROSCOE K H, POOROOSHASB H B. A theoretcial and experimental study of strains in triaxial compression tests on normally consolidated clays[J]. Géotechnique, 1963, 13(1): 12-38.
    [31] YAO Y P, HOU W, ZHOU A N. Constitutive model for overconsolidated clays[J]. Science China-Technological Sciences, 2008, 51(2): 179-191.
    [32] MITA K A, DASARI G R, LO K W. Performance of a three-dimensional Hvorslev-modified Cam clay model for overconsolidated clay[J]. International Journal of Geomechanics, 2004, 4(4): 296-309.
    [33] YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics, 2008, 35(2): 210-222.
    [34] NAKAI T, HINOKIO M. A simple elastoplastic model for sand considering the stress path dependency in three-dimensional stresses[J]. Soils and Foundations, 2004, 44(2): 53-70.
    [35] YAO Y P, SUN D A, LUO T. A critical state model for sands dependent on stress and density[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(4): 323-337.
    [36] YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
    [37] 姚仰平, 李自强, 侯伟, 等. 基于改进伏斯列夫线的超固结土本构模型[J]. 水利学报, 2008, 39(11): 1244-1250. (YAO Yang-ping, LI Zi-qiang, HOU Wei, et al. Constitutive model of over-consolidated clay based on improved Hvorslev envelope[J]. Journal of Hydraulic Engineering, 2008, 39(11): 1244-1250. (in Chinese))
    [38] YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868.
    [39] WROTH C P, LOUDON P A. The correlation of strains within a family of triaxial tests on overconsolidated samples of kaolin[C]// Proceedings of the Geotechnical Conference. Oslo, 1967: 159-163.
    [40] 白冰, 赵成刚. 温度对黏性土介质力学特性的影响[J]. 岩土力学, 2003, 24(4): 533-537. (BAI Bing, ZHAO Cheng-gang. Temperature effects on mechanical characteristics of clay soils[J]. Rock and Soil Mechanics, 2003, 24(4): 533-537. (in Chinese))
    [41] LALOUI L, CEKEREVAC C. Thermo-plasticity of clays[J]. Computers and Geotechnics, 2003, 30(8): 649-660.
    [42] CAMPANELLA R G, MITCHELL J K. Influence of temperature variations on soil behaviour[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(3): 709-734.
    [43] ERIKSSON L G. Temperature effects on consolidation properties of sulphide clays[C]//Proceedings of the 12th International Conference on Soil Mechanics and Foudation Engineering. Rotterdam Netheland, 1989: 2087-2090.
    [44] YAO Y P, YANG Y F, NIU L. UH model considering temperature effects[J]. Science China-Technological Sciences, 2011, 54(1): 190-202.
    [45] YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345.
    [46] HUECKEL T, FRANCOIS B, LALOUI L. Explaining thermal failure in saturated clays[J]. Géotechnique, 2009, 59(3): 197-212.
    [47] BJERRUM L. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings[J]. Géotechnique, 1967, 17(2): 83-118.
    [48] YIN J H, GRAHAM J. Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 736-745.
    [49] YAO Y P, KONG L M, HU J. An elastic-viscous-plastic model for overconsolidated clays[J]. Science China-Technological Sciences, 2013, 56(2): 441-457.
    [50] YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2014, doi:10.1061/(ASCE)EM. 1943-7889.0000885.
    [51] ZHU J G. Experimental study and elastic visco-plastic modelling of the time-dependent stress-strain behaviour of Hong Kong marine deposits[D]. Hong Kong: The Hong Kong Polytechnic University, 2000.
    [52] ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430.
    [53] 姚仰平, 牛雷, 崔文杰, 等. 超固结非饱和土的本构关系[J]. 岩土工程学报, 2011, 33(6): 833-839. (YAO Yang-ping, NIU Lei, CUI Wen-jie, et al. UH model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 833-839. (in Chinese))
    [54] 姚仰平, 牛雷, 杨一帆, 等. 考虑温度影响的非饱和土本构模型[J]. 岩土力学, 2011, 32(10): 2881-2888. (YAO Yang-ping, NIU Lei, YANG Yi-fan, et al. Constitutive model for unsaturated clays considering temperature effects[J]. Rock and Soil Mechanics, 2011, 32(10): 2881-2888. (in Chinese))
    [55] YAO Y P, NIU L, CUI W J. Unified hardening (UH) model for overconsolidated unsaturated soils[J]. Canadian Geotechnical Journal, 2014, 51(7): 810-821.
    [56] 姚仰平, 牛雷, 韩黎明, 等. 超固结非饱和土的试验研究[J]. 岩土力学, 2011, 32(6): 1601-1606. (YAO Yang-ping, NIU Lei, HAN Li-ming, et al. Experimental study of behaviors of overconsolidated unsaturated clays[J]. Rock and Soil Mechanics, 2011, 32(6): 1601-1606. (in Chinese))
    [57] ESTABRAGH A R, JAVADI A A. Critical state for overconsolidated unsaturated silty soil[J]. Canadian Geotechnical Journal, 2008, 45(3): 408-420.
    [58] MATSUOKA H, JUNICHI H, KIYOSHI H. Deformation and failure of anisotropic and deposits[J]. Soil Mechanics and Foundation Engineering, 1984, 32(11): 31-36. (in Japanese)
    [59] 罗汀, 李萌, 孔玉侠, 等. 基于SMP的岩土各向异性强度准则[J]. 岩土力学, 2009, 30(增刊2): 127-131. (LUO Ting, LI Meng, KONG Yu-xia, et al. Failure criterion based on SMP for anisotropic geomaterials[J]. Rock and Soil Mechanics, 2009, 30(S2): 127-131. (in Chinese))
    [60] YAO Y P, KONG Y X. Extended UH model: three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2011, 138(7): 853-866.
    [61] 姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 43(1): 43-50. (YAO Yang-ping, KONG Yu-xia. Study on strength and failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 43(1): 43-50. (in Chinese))
    [62] MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principle stresses[J]. Proceedings of JSCE, 1974, 232: 59-70.
    [63] KIRKGARD M M, LADE P V. Anisotropic three-dimensional behavior of a normally consolidated clay[J]. Canadian Geotechnical Journal, 1992, 30(5): 848-858.
    [64] 王立忠, 沈恺伦. K0 固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4): 496-504. (WANG Li-zhong, SHEN Kai-lun. A constitutive model of K0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese))
    [65] 尹振宇. 天然软黏土的弹黏塑性本构模型:进展及发展[J]. 岩土工程学报, 2011, 33(9): 1357-1369. (YIN Zhen-yu. Elastic viscoplastic models for natural soft clay: review and development[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369. (in Chinese))
    [66] ZHU E Y, YAO Y P. A structured UH model[C]// Constitutive Modeling of Geomaterials. Beijing, 2013: 675-689.
    [67] 施建勇, 赵维炳, LEE Fouk-hou, 等. 软黏土的各向异性和小应变条件下的本构模型(ASM) [J]. 岩土力学, 2000, 21(3): 209-212. (SHI Jian-yong, ZHAO Wei-bing, LEE Fouk-hou, et al. A constitutive model for anisotropic and small-strain behaviour of soft clay(ASM)[J]. Rock and Soil Mechanics, 2000, 21(3): 209-212. (in Chinese))
    [68] 姚仰平, 万征, 秦振华. 动力UH模型及其有限元应用[J]. 力学学报, 2012, 44(1): 132-139. (YAO Yang-ping, WAN Zheng, QIN Zhen-hua. Dynamic UH model for sands and its application in FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 132-139. (in Chinese))
    [69] TATSUOKA F, TOKI S, MIURA S, et al. Some factors affecting cyclic undrained triaxial strenght of sand[J]. Soils and Foundations, 1986, 36(3): 99-116.
    [70] CHU J, LO S. Asymptotic behaviour of a granular soil in strain path testing[J]. Géotechnique, 1994, 44(1): 65-82.
    [71] 罗汀, 侯伟, 姚仰平. 考虑渐近状态特性的超固结土本构模型[J]. 岩土力学, 2010, 31(3): 683-688. (LUO Ting, HOU Wei, YAO Yang-ping. An asymptotic state constitutive model for overconsolidated clays[J]. Rock and Soil Mechanics, 2010, 31(3): 683-688. (in Chinese))
    [72] LUO T, YAO Y P, CHU J. Asymptotic state behaviour and its modeling for saturated sand[J]. Science China-Technological Sciences, 2009, 52(8): 2350-2358.
    [73] 罗汀, 田新国, 姚仰平, 等. 土的三维渐近状态准则[J]. 岩土工程学报, 2011, 33(5): 792-796. (LUO Ting, TIAN Xin-guo, YAO Yang-ping, et al. Three-dimensional asymptotic state criterion for soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 792-796. (in Chinese))
    [74] LUO T, YAO Y P, ZHOU A N, et al. A three-dimensional criterion for asymptotic states[J]. Computers and Geotechnics, 2012, 41: 90-94.
    [75] YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science China-Technological Sciences, 2004, 47(6): 691-709.
    [76] MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95.
    [77] YAO Y P, SUN D A. Application of Lade's criterion to Cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119.
    [78] SUN D A, YAO Y P, MATSUOKA H. Modification of critical state models by Mohr-Coulomb criterion[J]. Mechanics Research Communications, 2006, 33(2): 217-232.
    [79] YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123.
    [80] 王乃东, 姚仰平. 基于变换应力方法的各向异性模型三维化[J]. 岩土工程学报, 2011, 33(1): 50-56. (WANG Nai-dong, YAO Yang-ping. Generalization of anisotropic constitutive models using transformed stress method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 50-56. (in Chinese))
    [81] YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629.
    [82] COLLINS I F. Elastic/plastic models for soils and sands[J]. International Journal of Mechanical Science, 2005, 47(4): 493-508.
    [83] YAO Y P, CUI W J, WANG N D. Three-dimensional dissipative stress space considering yield behavior in deviatoric plane[J]. Science China-Technological Sciences, 2013, 56(8): 1999-2009.
    [84] SUN D A, MATSUOKA H, YAO Y P, et al. An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis[J]. Computers and Geotechnics, 2004, 31(1): 37-46.
    [85] 姚仰平, 冯兴, 黄祥, 等. UH模型在有限元分析中的应用[J]. 岩土力学, 2010, 31(1): 237-245. (YAO Yang-ping, FENG Xing, HUANG Xiang, et al. Application of UH model to finite element analysis[J]. Rock and Soil Mechanics, 2010, 31(1): 237-245. (in Chinese))
    [86] 罗汀, 秦振华, 姚仰平, 等. UH模型切线刚度矩阵对称化及其应用[J]. 力学学报, 2011, 43(6): 1186-1189. (LUO Ting, QIN Zhen-hua, YAO Yang-ping, et al. Symmetrization and applications of tangent stiffness matrix for UH model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 1186-1189. (in Chinese))
    [87] 冯兴, 姚仰平, 李春亮, 等. UH模型在双层地基受力变形分析中的应用[J]. 岩土工程学报, 2012, 34(5): 805-811. (FENG Xing, YAO Yang-ping, LI Chun-liang, et al. Application of UH model to analysis of deformation of double-layer subgrade[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 805-811. (in Chinese))
    [88] LUO T, QIN Z H, FENG X, et al. A symmetrisation method for non-associated unified hardening model[J]. Comptuers and Geotechnics, 2013, 52(6): 38-45.
    [89] 熊文林. 非关联塑性切线刚度矩阵的对称表示[J]. 应用数学和力学, 1986, 7(11): 983-991. (XIONG Wen-lin. Symmetric formulation of Tangential stiffness for non-associated plasticity[J]. Applied Mathematics and Mechanics, 1986, 7(11): 983-991. (in Chinese))
    [90] YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 603-608.
计量
  • 文章访问数:  931
  • HTML全文浏览量:  12
  • PDF下载量:  5877
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-21
  • 发布日期:  2015-03-01

目录

    /

    返回文章
    返回