• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

固化污泥压缩特性研究

李磊, 徐菲, 周灵君, 边博, 张春雷

李磊, 徐菲, 周灵君, 边博, 张春雷. 固化污泥压缩特性研究[J]. 岩土工程学报, 2015, 37(1): 171-176. DOI: 10.11779/CJGE201501021
引用本文: 李磊, 徐菲, 周灵君, 边博, 张春雷. 固化污泥压缩特性研究[J]. 岩土工程学报, 2015, 37(1): 171-176. DOI: 10.11779/CJGE201501021
LI Lei, XU Fei, ZHOU Ling-jun, BIAN Bo, ZHANG Chun-lei. Compression characteristics of solidified sewage sludge[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 171-176. DOI: 10.11779/CJGE201501021
Citation: LI Lei, XU Fei, ZHOU Ling-jun, BIAN Bo, ZHANG Chun-lei. Compression characteristics of solidified sewage sludge[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 171-176. DOI: 10.11779/CJGE201501021

固化污泥压缩特性研究  English Version

基金项目: 国家自然科学基金项目(40972180,41272295); 广东省交通运输厅科研项目([2012]1379号)
详细信息
    作者简介:

    李 磊(1976- ),男,河南信阳人,博士,副教授,从事环境岩土工程方面的研究工作。E-mail: lilei@hhu.edu.cn。

  • 中图分类号: TU447;X172

Compression characteristics of solidified sewage sludge

  • 摘要: 固化技术是污泥进行填埋处置常用的处理技术之一,固化污泥的压缩参数是进行填埋场库容计算和稳定性评价的重要指标。选用水泥作为固化材料,开展了不同材料添加量和不同养护时间条件下固化污泥的压缩特性研究,并从固化污泥水分形态和转化角度对压缩性变化机理进行了探讨。结果表明,即使水泥添加量达到30%,固化污泥的压缩指数也高达0.71,是一种高压缩性的土。水泥的添加量在10%~20%时,固化污泥压缩指数降低显著,但是超过20%以后,压缩指数变化趋于稳定。其原因主要在于污泥中的水分具有较高的结合势能,过多的水泥并不能获得更多的自由水发生水化反应。固化污泥的压缩指数随着养护时间的增加而降低,当达到14 d时趋于稳定,但60 d以后压缩指数又出现降低趋势,其原因主要是微生物逐步分解污泥结合水中的碳氢化合物,有机质含量下降,导致压缩指数降低。
    Abstract: The solidification technology is a general disposal method for sewage sludge landfills, and the compression parameter is an important factor for volume calculation and stability evaluation of landfills. The sewage sludge is solidified by using cement. The researches on the compression characteristics are carried out under different cement contents and curing period conditions. In addition, the compression mechanism is investigated from the viewpoints of water forms and transform. The results show that if the cement content is 30%, the solidified sludge is highly compressed and its compression index is 0.71. The compression index greatly decreases with the cement content of 10%~20%, and it tends to be stable when the cement content is more than 20%. The reason is that the cement can not get more free water for reaction because the water forms are mainly the bound water in the sewage sludge. With the curing period extended, the compression index decreases and becomes stable after 14 days. But the compression index is declined after 60 days, which is caused by decomposed hydrocarbon and decrease of organic contents by the microorganism action.
  • [1] 詹良通, 罗小勇, 管仁秋, 等. 某垃圾填埋场污泥坑外涌及其引发下游堆体失稳机理[J]. 岩土工程学报, 2013, 35(7): 1189-1196. (ZHAN Liang-tong, LUO Xiao-yong, GUAN Ren-qiu, et al. Failure mechanism of sludge pit and downstream waste slopeo f a MSW landfill[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1189-1196. (in Chinese))
    [2] 施建勇, 王娟. 污泥掺入生活垃圾后的力学特性试验研究[J]. 岩土力学, 2012, 33(11): 3208-3212. (SHI Jian-yong, WANG Juan. Mechanical behavior test study of sludge mixed with municipal solid waste[J]. Rock and Soil Mechanics, 2012, 33(11): 3208-3212. (in Chinese))
    [3] RUSSELL H. Race to clear sludge landslide[C]// New Civil Engineer, Institution of Civil Engineers, London, 20th. London, 1992.
    [4] CHENG Lin, WEI Zhu, JIE Han. Strength and leachability of solidified sewage sludge with different additives[J]. Journal of Materials in Civil Engineering, 2013, 25(11): 1594-1601.
    [5] 李磊, 朱伟, 林城, 等. 干湿循环条件下固化污泥的物理稳定性研究[J]. 岩土力学, 2009, 30(10): 3001-3004. (LI Lei, ZHU Wei, LIN Cheng, et al. Study of wet and dry properties of solidified sludge[J]. Rock and Soil Mechanics, 2009, 30(10): 3001-3012. (in Chinese))
    [6] 朱春鹏, 吴海清, 刘汉龙, 等. 纸浆渣烧结灰基本特性及其在污泥固化中的试验研究[J]. 岩土力学, 2012, 33(10): 2979-2984. (ZHU Chun-peng, WU Hai-qing, LIU Han-long, et al. An experimental study on basic properties of paper sludge ash and solidified sludge using paper sludge ash[J]. Rock and Soil Mechanics, 2012, 33(10): 2979-2984. (in Chinese))
    [7] O’KELLY B C. Geotechnical properties of a municipal water treatment sludge incorporating a coagulant[J]. Canadian Geotechnical Journal, 2008a, 45(5): 715-725.
    [8] ZHAN T L T, ZHAN X J, LIN W A, et al. Field and laboratory investigation on geotechnical properties of sewagesludge disposed in a pit at Changan landfill, Chengdu, China[J]. Engineering Geology, 2014, 170: 24-32.
    [9] 黄英豪. 固化淤泥的流动性及压实后力学性质[D]. 南京: 河海大学, 2011. (HUANG Ying-hao. Flowability of solidified dredged material and its mechanical behavior after compaction[D]. Nanjing: Hohai University, 2011. (in Chinese))
    [10] CHEN Yun-min, ZHAN Liang-tong, WEI Hai-yun, et al. Aging and compressibility of municipal solid wastes[J]. Waste Management, 2009, 29(1): 86-95.
    [11] HOSSAIN M S, GABR M A, BARLAZ M A. Relationship of compressibility parameters to municipal solid waste decomposition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1151-1158.
    [12] 丁建文. 高含水率疏浚淤泥流动固化土的力学性状及微观结构特征研究[D]. 南京: 东南大学, 2011. (DING Jian-wen. Mechanical properties and microstructure characteristics of solidified dredged clays at high water content[D]. Nanjing: Southeast University, 2011. (in Chinese))
    [13] BUTTERFIELD R. A natural compression law for soils[J]. Géotechnique, 1979, 29(4): 469-480.
    [14] SRIDHARAN A, ABRAHAM B M, JOSE B T. Improved technique for estimation of preconsolidation pressure[J]. Géotechnique, 1991, 41(2): 263-268.
    [15] HONG Z S, ONITSUKA K A. A method of correcting yield stress and compression index of Ariake clays for sample disturbance[J]. Soils and Foundations, 1998, 38(2): 211-222.
    [16] 李磊, 朱伟, 吉顺健, 等. 微生物对固化/稳定化污泥长期强度的影响研究[J]. 岩土工程学报, 2008, 30(12): 1778-1782. (LI Lei, ZHU Wei, JI Shun-jian, et al. Influence of micro-organism on long-term strength of solidified/stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1778-1782. (in Chinese))
    [17] ZHU W, ZHANG C L, ABRAHAM C F. Chiu. Soil-Water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2007, 133(5): 588-598.
    [18] LEBEDEV A F. Soil and groundwaters[M]. Moscow: The Academy of Sciences of the USSR, 1936.
    [19] 张春雷. 基于水分转化模型的淤泥固化机理研究[D]. 南京: 河海大学, 2007. (ZHANG Chun-lei. Study of dredged sediments solidification mechanism based on water transfer mode[D]. Nanjing: Hohai University, 2007. (in Chinese))
    [20] 孙晓辉. 固化污泥早期强度发展机理及早强固化材料研究[D]. 南京: 河海大学, 2012. (SUN Xiao-hui. Study on mechanism of early-strength of solidified sludge and binders with high early-strength for sludge treatment[D]. Nanjing: Hohai University, 2012. (in Chinese))
    [21] SMITH J K, VESILIND P A. Dilatometric measurement of bound water in waste water sludge[J]. Water Research, 1995, 29(12): 2621-2626.
    [22] WERTHER J, OGADA T. Sewage sludge combustion[J]. Progress in Energy and Combustion Science, 1999, 25: 55-116.
  • 期刊类型引用(13)

    1. 赵晶,陈诚,杜棣宾,文桃,简涛,应赛,周继强. 基于NMR的饱和土渗透系数预测方法. 山东大学学报(工学版). 2025(01): 108-116 . 百度学术
    2. 李鸿玮,马丽娜,张彦辉,李柏生. 干湿循环下基于Wiener退化的水泥基复合加芯墙板寿命预测. 兰州理工大学学报. 2023(01): 22-29 . 百度学术
    3. 韩立炜,姬伟斌. 降雨对膨胀土孔隙结构的影响研究. 人民黄河. 2023(05): 143-147+162 . 百度学术
    4. 包义勇,程学磊,李文东,方大转,李顺群,赵磊. 膨胀土地基海绵化改造技术分析. 安徽建筑. 2023(06): 97-98 . 百度学术
    5. 吴广水,田慧会,郝丰富,王书齐,杨文洲,祝婷梅. 基于核磁共振T_2时间分布快速预测不同干密度土体的渗透系数. 岩土力学. 2023(S1): 513-520 . 百度学术
    6. 吴广水,王书齐,祝婷梅,杨文洲,施航向,赵延平. 初始含水率和干密度对膨胀土膨胀力影响的试验研究. 河南工程学院学报(自然科学版). 2023(04): 29-32+50 . 百度学术
    7. 雷胜友,袁文治,翟志刚,田刚,陈雨菲,李思雨,芦地,柳明宇. 盐溶液质量分数对非饱和膨胀土抗剪强度的影响. 河南理工大学学报(自然科学版). 2022(02): 178-184 . 百度学术
    8. 李宝平,支枭雄,张玉,平高权. NaCl溶液改良膨胀土滞回曲线形态特征. 科学技术与工程. 2022(13): 5322-5330 . 百度学术
    9. 李宝平,支枭雄,张玉,平高权,杨倩. NaCl溶液改良膨胀土动力特性试验. 中国科技论文. 2022(07): 780-788 . 百度学术
    10. 雷胜友,田刚,陈雨菲,袁文治,翟志刚. 考虑盐溶液渗入影响的膨胀土边坡稳定性分析. 中国科技论文. 2021(02): 150-157 . 百度学术
    11. 陈君廉,李辉,谈云志. 盐溶液浸润下团粒膨润土的膨胀与渗透性能研究. 三峡大学学报(自然科学版). 2021(02): 80-85 . 百度学术
    12. 邱翱博,王欢,张旭,曹义康,杨惠如. 粉砂土改良膨胀土渗透性与孔隙特性研究. 河南大学学报(自然科学版). 2021(05): 614-623 . 百度学术
    13. 田芳. 冻融循环作用下膨胀土的力学与孔隙分布特点. 山东农业大学学报(自然科学版). 2020(02): 365-369 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  339
  • HTML全文浏览量:  2
  • PDF下载量:  440
  • 被引次数: 28
出版历程
  • 收稿日期:  2014-03-20
  • 发布日期:  2015-01-19

目录

    /

    返回文章
    返回