• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

氧化镁活性对碳化固化效果影响研究

刘松玉, 李晨

刘松玉, 李晨. 氧化镁活性对碳化固化效果影响研究[J]. 岩土工程学报, 2015, 37(1): 148-155. DOI: 10.11779/CJGE201501018
引用本文: 刘松玉, 李晨. 氧化镁活性对碳化固化效果影响研究[J]. 岩土工程学报, 2015, 37(1): 148-155. DOI: 10.11779/CJGE201501018
LIU Song-yu, LI Chen. Influence of MgO activity on stabilization efficiency of carbonated mixing method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 148-155. DOI: 10.11779/CJGE201501018
Citation: LIU Song-yu, LI Chen. Influence of MgO activity on stabilization efficiency of carbonated mixing method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 148-155. DOI: 10.11779/CJGE201501018

氧化镁活性对碳化固化效果影响研究  English Version

基金项目: 国家自然科学基金项目(51279097,51379117,51479108)
详细信息
    作者简介:

    刘松玉(1963- ),男,教授,博士生导师,主要从事土力学理论、桩基工程、特殊地基和路基稳定、地下空间技术、原位测试技术等方面的研究。E-mail: liusy@seu.edu.cn。

  • 中图分类号: TU472

Influence of MgO activity on stabilization efficiency of carbonated mixing method

  • 摘要: 碳化固化技术是近年来提出的一种低碳搅拌处理软弱土创新技术。该技术先采用MgO水泥与土进行搅拌,再利用CO2对之进行碳化,以达到快速提高强度的目的。针对MgO活性对碳化固化的影响规律进行了室内试验研究,并分析了其微观机理。结果表明:试样能在3~6 h内完成大部分碳化,碳化24 h后达到稳定,氧化镁活性对碳化固化效果有显著影响,具体表现为氧化镁活性越高,试样碳化后碳化度越高、碳化产物越多、孔隙体积越小、微观结构越密实;试样碳化后体积明显增长,但氧化镁活性对体积变化影响不大,3种氧化镁试样体积膨胀均为16%左右;氧化镁活性越高试样强度越大,高活性氧化镁试样碳化6 h的强度可达标准养护28 d水泥土强度,稳定强度达到2.5 MPa,而低活性氧化镁试样强度仅为0.5 MPa;试样碳化稳定后高活性试样pH值为9.6,低活性试样pH值为9.0,均低于水泥土pH值。
    Abstract: The carbonated deep mixing method is an innovative CO2 consuming method for ground improvement, in which the MgO binder is firstly mixed with the soft soils and then CO2 is injected for carbonating in few hours. Using the carbonated mixing method, higher soil-MgO stabilized strength can be obtained in very short time. The influence of MgO activity on the stabilization efficiency and its mechanism were studied in this paper. A typical clay from Wuhan was used as the target soil and three different activities of MgO were selected as binders for laboratory tests. The results show that the carbonated degree with different active MgO binders can be predominantly completed in 3~6 hours and reaches stability after 24 hours. There are almost the same volume expansion of about 16% during carbonating process at all MgO binders. While the MgO activity has significant influences on the efficiency of the carbonated mixing method. With the higher activity MgO binder, the higher carbonated degree and more carbonated products forming denser texture are observed. Its unconfined compressive strength after carbonating 6 hours with higher activity MgO gets to the similar strength of 28 day-cured cement-stabilized soils. The final strength with higher activity MgO carbonated mixing soils can reach 2.5 MPa, while that with much lower activity MgO is only 0.5 MPa. The carbonated MgO-stabilized soils have considerable lower pH value (9.0~9.6) than the pH value (12) of the cement-stabilized soils.
  • [1] 刘松玉, 钱国超, 章定文. 粉喷桩复合地基理论与工程应用[M]. 北京: 中国建筑工业出版社, 2006. (LIU Song-yu, QIAN Guo-chao, ZHANG Ding-wen. The principle and application of dry jet mixing composite foundation[M]. Beijing: China Architecture and Building Press, 2006. (in Chinese))
    [2] 易耀林. 基于可持续发展的搅拌桩新技术与理论[D]. 南京: 东南大学, 2013. (YI Yao-lin. Sustainable novel deep mixing methods and theory[D]. Nanjing: Southeast University, 2013. (in Chinese))
    [3] HARRISON J. Reactive magnesium oxide cement: Australia, WO/055049[P]. 2001
    [4] HARRISON J. New cements based on the addition of reactive magnesia to Portland cement with or without addedpozzolan [C]// Proceedings of the CIA Conference: Concrete in the Third Millennium, CIA. Brisbane, 2003.
    [5] HARRISON J. Reactive magnesium oxide cements: United States Patent[P]. 7347896, 2004.
    [6] SHAND M. A. The chemistry and technology of magnesia[M]. New York: Wiley, 2006.
    [7] YI Y L, LISKA M, UNLUER C, et al. Carbonating magnesia for soil stabilisation[J]. Canadian Geotechnical Journal, 2013, 50(8): 899-905.
    [8] YI Y L, LISKA M, AL-TABBAA A, et al. Preliminary laboratory-scale model auger installation and testing of carbonated soil-MgO columns[J]. ASTM Geotechnical Testing Journal, 2013, 36(3): 384-393.
    [9] LISKA M. Performance of reactive magnesia cement and porous construction products[D]. UK: University of Cambridge, 2009.
    [10] 易耀林, LISKA M, AL-TABBAA A, 等. 一种土壤的碳化固化方法及其装置:中国, 201010604013.1[P]. 2010. (YI Yao-lin, LISKA M, AL-TABBAA A, et al. A kind of soil carbonation curing method and device: China, 201010604013.1[P]. 2010. (in Chinese))
    [11] 易耀林, LISKA M., AL-TABBAA A, 等. 一种用于土体固化的绿色低碳固化剂:中国, 201010604325.2[P]. 2010. (Yi Yaolin, LISKA M, AL-TABBAA A, et al. A kind of low-carbon curing agent used for soil stabilization: China, 201010604325.2[P]. 2010. (in Chinese))
    [12] BEAUDOIN J J, RAMACHANDRAN V S. Strength development in magnesium oxychloride and other cements[J]. Cement and Concrete Research, 1975, 5(4): 617-630.
    [13] HARPER F C. Effect of calcination temperature on the properties of magnesium oxides for use in magnesium oxychloride cements[J]. Journal of Applied Chemistry, 1967, 17(1): 5-10.
    [14] 孙世清, 谢维章. 用热分析方法研究MgO的活性[J].硅酸盐学报, 1986, 14(2): 226-232. (SUN Shi-qing, XIE Wei-zhang. Study on the activity of MgO by thermal analysis[J]. Journal of the Chinese Ceramic Society, 1986, 14(2): 226-232. (in Chinese))
    [15] 钱海燕, 邓敏, 徐玲玲, 等. 轻烧氧化镁活性测定方法的研究[J]. 化工矿物与加工, 2005(1): 22-24. (QIAN Hai-yan, DENG Min, XU Ling-ling, et al. Study on the method of determining activity of light-burned magnesia[J]. Industrial Minerals and Processing, 2005(1): 22-24. (in Chinese))
  • 期刊类型引用(21)

    1. 张琨,王珂,任建喜,冯上鑫,常鹏博,赵玉桃,苗彦平,胡俭. 随钻钻进参数优化下煤体原位应力响应特征解析. 煤田地质与勘探. 2025(02): 213-222 . 百度学术
    2. 赵同彬,赵志刚,齐炎山,尹延春,牛旭,李淇凡. 基于大直径钻孔钻进多参量的煤体应力钻测方法. 煤炭科学技术. 2025(01): 122-132 . 百度学术
    3. 李杨,王雁冰,岳小磊,岳中文,李为. 冲旋作用下随钻测量系统研发与应用. 采矿与安全工程学报. 2024(01): 114-122 . 百度学术
    4. 许振浩,邵瑞琦,林鹏,李术才,向航,韩涛,李珊. 隧道不良地质识别:方法、现状及智能化发展方向. 地球学报. 2024(01): 5-24 . 百度学术
    5. 查浩,魏玉峰,李树武,李常虎,赵天丞. 考虑轴向裂隙影响的岩体完整性计算模型. 岩石力学与工程学报. 2024(S2): 3972-3980 . 百度学术
    6. 肖浩汉,曹瑞琅,王玉杰,赵宇飞,孙彦鹏. 随钻监测数据预处理方法研究. 水利学报. 2024(11): 1379-1390 . 百度学术
    7. 王琦,高红科,冯帆. 岩体力学参数旋切钻进测试方法研究进展. 绿色矿山. 2024(04): 333-343 . 百度学术
    8. 徐海寒,秦昊,张辉,陈晓. 机器学习算法在岩性识别上的应用对比研究. 防护工程. 2024(06): 54-61 . 百度学术
    9. 岳中文,戴诗清,李杨,岳小磊,李世辉,曹武. 煤巷液压锚杆钻机随钻参数采集系统及其应用. 矿业科学学报. 2023(01): 66-73 . 百度学术
    10. 汪小刚. 岩体工程力学参数取值方法研究Ⅰ:原位试验与定量类比. 水利学报. 2023(01): 13-23 . 百度学术
    11. 贾连辉,陈帅,贾正文,荆留杰,陈强,牛孔肖. 钻爆法隧道智能建造体系及关键技术研究. 隧道建设(中英文). 2023(03): 392-407 . 百度学术
    12. 李明超,李明泽,韩帅,张佳文,赵文超. 耦合多源勘察信息的水工岩体完整性智能评价方法. 岩土工程学报. 2023(08): 1674-1683 . 本站查看
    13. 刘华吉,孙红林,张占荣,尤明龙,谭飞,李炜. 基于随钻参数的砂岩与砂质泥岩地层分界面智能识别. 隧道建设(中英文). 2023(S1): 304-312 . 百度学术
    14. 曹瑞琅,王玉杰,邢泊,赵宇飞,沈强. 基于冲击耗能指数定量评价岩石硬度试验研究. 岩土力学. 2023(09): 2619-2627 . 百度学术
    15. 许振浩,王朝阳,张津源,于东晓,林鹏,张啸,潘东东,李天昊. TBM隧道掘进地质感知与岩-机数字孪生:方法、现状与数智化发展方向. 应用基础与工程科学学报. 2023(06): 1361-1381 . 百度学术
    16. 冯上鑫,王善勇. 旋切作用下岩石破碎机理及岩石可钻性的试验研究. 煤炭学报. 2022(03): 1395-1404 . 百度学术
    17. 岳中文,岳小磊,杨仁树,王煦,李为,戴诗清,李杨. 随钻岩性识别技术研究进展. 矿业科学学报. 2022(04): 389-402 . 百度学术
    18. 杨启贵,张传健,颜天佑,刘琪,李建贺. 长距离调水工程建设与安全运行集成研究及应用. 岩土工程学报. 2022(07): 1188-1210 . 本站查看
    19. 徐振洋,吴怡璇,王雪松,刘鑫,郭连军,柴青平. 旋压钻进破岩的应力特征研究. 金属矿山. 2022(10): 24-29 . 百度学术
    20. 侯仕军,丁伟捷,田帅康,梁书锋,刘殿书. 随钻测量技术在非油气工程领域的应用现状与展望. 矿业研究与开发. 2022(12): 41-49 . 百度学术
    21. 庹晓军,刘强,曹瑞琅,赵宇飞,何瑞良. 基于随钻技术的振冲碎石桩施工质量评价方法研究. 水利水电快报. 2021(12): 59-64 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  448
  • HTML全文浏览量:  3
  • PDF下载量:  1138
  • 被引次数: 31
出版历程
  • 收稿日期:  2014-06-19
  • 发布日期:  2015-01-19

目录

    /

    返回文章
    返回