• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

拉压耦合大变形锚杆作用机理及其试验研究

吴学震, 王刚, 蒋宇静, 公彬, 李博

吴学震, 王刚, 蒋宇静, 公彬, 李博. 拉压耦合大变形锚杆作用机理及其试验研究[J]. 岩土工程学报, 2015, 37(1): 139-147. DOI: 10.11779/CJGE201501017
引用本文: 吴学震, 王刚, 蒋宇静, 公彬, 李博. 拉压耦合大变形锚杆作用机理及其试验研究[J]. 岩土工程学报, 2015, 37(1): 139-147. DOI: 10.11779/CJGE201501017
WU Xue-zhen, WANG Gang, JIANG Yu-jing, GONG Bin, LI Bo. Mechanism of CTC-yield bolts and its experimental research[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 139-147. DOI: 10.11779/CJGE201501017
Citation: WU Xue-zhen, WANG Gang, JIANG Yu-jing, GONG Bin, LI Bo. Mechanism of CTC-yield bolts and its experimental research[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 139-147. DOI: 10.11779/CJGE201501017

拉压耦合大变形锚杆作用机理及其试验研究  English Version

基金项目: 国家自然科学基金项目(51278499,51478484); 铁道部科技研究开发计划课题(2010G016-B); 湖南省研究生科研创新项目(CX2012B062)
详细信息
    作者简介:

    吴学震(1988- ),男,博士研究生,主要从事深部岩石力学与工程等方面研究。E-mail: sdkdwxz@gmail.com。

    通讯作者:

    王刚

  • 中图分类号: TU411

Mechanism of CTC-yield bolts and its experimental research

  • 摘要: 在高应力作用下,围岩发生大变形破坏的现象非常普遍,硬岩常常产生严重的岩爆灾害,软岩则会表现出挤压大变形问题,严重影响深部工程安全。在这种条件下采用的支护体系不仅要具有较高的承载力,而且要能够适应较大的围岩变形而本身不发生破坏。提出了一种拉压耦合大变形锚杆,并详细介绍了它与围岩之间的相互作用机理。新型锚杆通过改善锚固结构,优化锚杆受力状态,提高了锚固结构的极限承载力,使锚杆杆体的变形性能得到充分的发挥,避免了传统锚杆因杆体不均匀变形导致的破坏问题。因而,高应力大变形条件下新型锚杆的锚固性能更优,更有利于保持围岩稳定。室内实验研究证实,在同等条件下拉压耦合锚杆的极限承载力明显大于传统锚杆,并且具有良好的大变形特性。针对矿山深部开采中遇到的软岩大变形和硬岩岩爆等灾害,新型锚杆将实现更优的加固效应。
    Abstract: The high stresses acting on rock masses in deep underground can cause serious stability problems such as squeezing of soft rocks and rock burst in hard rocks. The support system applied under high in-situ stress condition should be able to bear high loads and accommodate large deformation of rock masses without experiencing serious damage. A specifically designed rockbolt, called combination of tension and compression type yield bolt (CTC-yield bolt), is proposed. The inner thread segment and anchor compose the inner anchorage section of the bolt that is firmly fixed at the bottom of the borehole, while the smooth section of the bolt will elongate in response to rock deformation when the load exceeds its capacity. Such special structure can help avoid premature bolt failure due to the stress concentrations caused by fracture/joint opening. The static pull tests show that the new bolt has larger ultimate bearing capacity and better deformation property than the conventional rock bolt. The stress distribution at bolt-grout-rock interface is effectively optimized by the combined state of tension and compression of the grout inside and outside the anchor, thereby improving the anchorage force significantly. The deformation capacity of this new bolt is closely related to the length of its smooth section between the two anchors. The new bolt is expected to provide support for both the squeezing and the rock burst encountered in tunneling and mining engineering.
  • [1] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. (HE Man-chao, XIE He-ping, PENG Su-ping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. (in Chinese))
    [2] 卢兴利, 刘泉声, 苏培芳, 等. 潘二矿松软破碎巷道群大变形失稳机理及支护技术优化研究[J]. 岩土工程学报, 2013, 35(增刊1): 97-102. (LU Xing-li, LIU Quan-sheng, SU Pei-fang, et al. Instability mechanism and bracing optimization for roadway groups with soft and fractured surrounding rock in Pan'er Coal Mine[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 97-102. (in Chinese))
    [3] AMUSIN B. Ground control and design of deep mine openings[J]. International Journal of Rock Mechanics & Mining Sciences, 1998, 35: 1365-1609.
    [4] ORTLEPP W D. The behaviour of tunnels at great depth under large static and dynamic pressures[J]. Tunnelling and Underground Space Technology, 2001, 16: 41-48
    [5] EVERT HOEK. Practical rock engineering, Chapter 1, The development of rock engineering[OB/OL]. www.rocscience. com/hoek/Hoek.asp. 2007.
    [6] LI C C. Field observations of rock bolts in high stress rock masses[J]. Rock Mechanics and Rock Engineering, 2010, 43: 491-496.
    [7] ORTLEPP W D. Observation of mining-induced faults in an intact rock mass at depth[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37: 423-436.
    [8] HOEK E, KAISER P K, BAWDEN W F. Support of underground excavation in hard rock[M]. Rotterdam: Balkema, 1995.
    [9] LI C C. Performance of d-bolts under static loading[J]. Rock Mechanics and Rock Engineering, 2012, 45(2): 183-192.
    [10] COOK N G W, ORTLEPP W D. A yielding rock bolt. Chamber of Mines of South Africa[M]. South Africa: Research Organization Bulletin, 1968.
    [11] WINDSOR C R, THOMPSON A G. A new friction stabilizer assembly for rock and soil reinforcement applications[J]. Rock Support in Mining and Underground Construction, Rotterdam, 1992: 523-529.
    [12] JAGER A J. Two new support units for the control of rockburst damage[J]. Rock Support in Mining and Underground Construction, 1992: 621-631.
    [13] SALZBURG. In-situ pull testing of a yieldable rock bolt, Roofex[J]. Controlling Seismic Hazard and Sustainable Development of Deep Mines, 2009: 1081-1090.
    [14] LI C C. A new energy-absorbing bolt for rock support in high stress rock masses[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47: 396-404.
    [15] CHANTALE Doucet, BENOIT VOYZELLE. Technical information data shifts[R]. Canada, Natural Resources, 2012.
    [16] 张季如, 唐保付. 锚杆荷载传递机理分析的双曲函数模型[J]. 岩土工程学报, 2002, 24(2): 188-192. (ZHANG Ji-ru, TANG Bao-fu. Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 188-192. (in Chinese))
    [17] 黄雪峰, 马龙, 陈帅强, 等. 预应力锚杆内力传递分布规律与时空效应[J]. 岩土工程学报, 2014, 36(8): 1521-1525. (HUANG Xue-feng, MA Long, CHEN Shuai-qiang, et al. Distribution characteristics and time-space effects of internal force of prestressed anchor rod[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1521-1525. (in Chinese))
    [18] 张爱民, 胡毅夫. 压力型锚杆锚固段锚固效应特性分析[J]. 岩土工程学报, 2009, 31(2): 271-275. (ZHANG Ai-min, HU Yi-fu. Anchoring effect of pressure-type anchor rods on anchored section[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 271-275. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-12
  • 发布日期:  2015-01-19

目录

    /

    返回文章
    返回