• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和砂土液化后流体本构模型研究

周恩全, 王志华, 陈国兴, 吕丛

周恩全, 王志华, 陈国兴, 吕丛. 饱和砂土液化后流体本构模型研究[J]. 岩土工程学报, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
引用本文: 周恩全, 王志华, 陈国兴, 吕丛. 饱和砂土液化后流体本构模型研究[J]. 岩土工程学报, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
Citation: ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013

饱和砂土液化后流体本构模型研究  English Version

基金项目: 国家自然科学基金项目(50978235)
详细信息
    作者简介:

    周恩全(1986- ),男,山东烟台人,博士研究生,主要从事土动力学和岩土地震工程研究。E-mail: enquan1986@126.com。

    通讯作者:

    陈国兴

  • 中图分类号: TU413

Constitutive model for fluid of post-liquefied sand

  • 摘要: 利用空心圆柱扭剪仪开展了饱和南京细砂液化后常速率加载试验,考虑了有效固结压力和加载速率对饱和南京细砂液化后流体特性的影响,结果表明:液化后静加载过程中剪应力与孔压比的发展具有明显的二阶段特性,且剪应力与孔压比的发展有着良好的线性相关关系,有效围压及加载速率对二者的关系有着明显影响;据此提出一种符合液化后静加载过程的率相关性及孔压相关性流体本构模型,该模型将构成饱和砂土强度的土颗粒摩阻力与土-水黏滞阻力分别表示为时变型和非时变型剪切稀化流体;最后进行了该模型的验证性试验,并将模型预测结果与其他学者研究成果对比,验证试验及对比结果均表明该模型具有较好的适用性。
    Abstract: The static load tests on post-liquefied saturated Nanjing fine sand are carried out using the hollow cylinder apparatus. The effect of the initial effective confining pressure and loading rate on the fluid characteristics of post-liquefied saturated Nanjing fine sand is taken into account. The results show that the development process of the shear stress and pore water pressure ratio have obvious two-stage characteristics in static loading process, and they have a a good linear relationship. The effective confining pressure and the static loading rate have obvious influence on the relationship between them. On this basis, a constitutive model for fluid with rate and pore water pressure-dependent static loading process is proposed. In this model the friction resistance between soil particles and the viscous resistance between soil and water are respectively expressed as the thixotropic shear-thinning fluid and non-time-variant shear-thinning fluid. Finally, experiments and comparisons between the predicted curves and other researchers′test results are carried out, indicating that the proposed constitutive model has good applicability.
  • [1] 浜田政則, 安田進, 磯山龍二, 等. 液状化による地盤の永久変位の測定と考察[J]. 土木学会論文集, 1986, 376: 211-220. (HAMADA M, YASUDA S, ISOYAMA R, et al. Observation of permanent ground displacements-induced by soil liquefaction[J]. Proceedings of Japan Society of Civil Engineering, 1986, 376: 211-220. (in Japanese))
    [2] ADALIER K, A O. Liquefaction during the June 27, 1998 Adana-Ceyhan (Turkey) Earthquake[J]. Geotechnical and Geological Engineering, 2000, 18(3): 155-174.
    [3] SONMEZ B, ULUSAY R. Liquefaction potential at Izmit Bay: comparison of predicted and observed soil liquefaction during the Kocaeli Earthquake[J]. Bulletin of Engineering Geology and the Environment, 2008, 67(1): 1-9.
    [4] YUAN H, HUI Yang S, ANDRUS R D, et al. Liquefaction-induced ground failure: a study of the Chi-Chi earthquake cases[J]. Engineering Geology, 2004, 71(1/2): 141-155.
    [5] TOWHATA I, GOTO S, TAGUCHI Y, et al. Liquefaction Consequences and Learned Lessons During the 2011 Mw =9 Gigantic Earthquake[J]. Indian Geotechnical Journal, 2013, 43(2): 116-126.
    [6] TOWHATA I, YSSUDA S, KEN-ICHI T, et al. Prediction of permanent displacement of liquefied ground by means of minimum energy principle[J]. Soils and Foundations, 1992, 3(32): 97-116.
    [7] UZUOKA R, YASHIMA A, KAWAKAMI T, et al. Fluid dynamics based prediction of liquefaction induced lateral spreading[J]. Computers and Geotechnics, 1998, 22(3): 243-282.
    [8] HADUSH S, YASHIMA A, UZUOKA R. Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis[J]. Computers and Geotechnics, 2000, 27(3): 199-224.
    [9] HADUSH S, YASHIMA A, UZUOKA R, et al. Liquefaction induced lateral spread analysis using the CIP method[J]. Computers and Geotechnics, 2001, 28(8): 549-574.
    [10] KAWAKAMI T, SUEMASA N, HAMADA M, et al. Experimental study on mechanical properties of liquefied sand[C]// Proceedings of the 5th USJapan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction. Salt Lake City, 1994: 285-299.
    [11] HUANG Y, ZHENG H, MAO W, et al. Triaxial tests on the fluidic behavior of post-liquefaction sand[J]. Environmental Earth Sciences, 2012, 67(8): 2325-2330.
    [12] SAWICKI A, MIERCZYŃSKi J. On the behaviour of liquefied soil[J]. Computers and Geotechnics, 2009, 36(4): 531-536.
    [13] TOWHATA I, VARGAS-MONGE W, ORENSE R P, et al. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil[J]. Soil Dynamics and Earthquake Engineering. 1999, 18(5): 347-361.
    [14] TAMATE S, TOWHATA I. Numerical simulation of ground flow caused by seismic liquefaction[J]. Soil Dynamics and Earthquake Engineering. 1999, 18(7): 473-485.
    [15] DUNGCA J R, KUWANO J, TAKAHASHI A, et al. Shaking table tests on the lateral response of a pile buried in liquefied sand[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(2/3/4): 287-295.
    [16] 刘汉龙, 陈育民. 动扭剪试验中砂土液化后流动特性分析[J]. 岩土力学, 2009, 34(6): 1537-1541. (LIU Han-long, CHEN Yu-min. Analysis of flow characteristics of dynamic torsional tests on post liquefied sand[J]. 2009, 34(6): 1537-1541. (in Chinese))
    [17] HWANG J, KIM C, CHUNG C, et al. Viscous fluid characteristics of liquefied soils and behavior of piles subjected to flow of liquefied soils[J]. Soil Dynamics and Earthquake Engineering. 2006, 26(2/3/4): 313-323.
    [18] 陈育民, 刘汉龙, 邵国建, 等. 砂土液化及液化后流动特性试验研究[J]. 岩土工程学报, 2009, 31(9): 1408-1413. (CHEN Yu-min, LIU Han-long, SHAO Guo-jian, et al. Laboratory tests on flow characteristics of liquefied and post-liquefied sand[J]. 2009, 31(9): 1408-1413. (in Chinese))
    [19] 王志华, 周恩全, 陈国兴. 孔压增长后的饱和砂土流体特性及其孔压相关性[J]. 岩土工程学报, 2012, 34(3): 528-533. ( WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing, et al. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533. (in Chinese))
    [20] 谢定义, 张建民. 饱和砂土瞬态动力学特性与机理分析[M]. 西安: 陕西科学技术出版社, 1994. (XIE Ding-yi, ZHANG Jian-min. Transient dynamics characteristics and mechanism analysis of saturated sand[M]. Xian: Shanxi Publishing House of Science&Technology, 1994. (in Chinese))
    [21] 陈懋章. 黏性流体动力学基础[M]. 北京: 高等教育出版社, 2004. (CHEN Mao-zhang. Fundamentals of viscous fluid dynamics[M]. Beijing: Higher Education Press, 2004. (in Chinese))
    [22] HAMADA M, SATO H, KAWAKAMI T, et al. A consideration of the mechanism for liquefaction -related large ground displacement[C]// Proceedings of the 5th USJapan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Soil Liquefaction. Salt Lake City, 1994: 217-232.
  • 期刊类型引用(21)

    1. 张琨,王珂,任建喜,冯上鑫,常鹏博,赵玉桃,苗彦平,胡俭. 随钻钻进参数优化下煤体原位应力响应特征解析. 煤田地质与勘探. 2025(02): 213-222 . 百度学术
    2. 赵同彬,赵志刚,齐炎山,尹延春,牛旭,李淇凡. 基于大直径钻孔钻进多参量的煤体应力钻测方法. 煤炭科学技术. 2025(01): 122-132 . 百度学术
    3. 李杨,王雁冰,岳小磊,岳中文,李为. 冲旋作用下随钻测量系统研发与应用. 采矿与安全工程学报. 2024(01): 114-122 . 百度学术
    4. 许振浩,邵瑞琦,林鹏,李术才,向航,韩涛,李珊. 隧道不良地质识别:方法、现状及智能化发展方向. 地球学报. 2024(01): 5-24 . 百度学术
    5. 查浩,魏玉峰,李树武,李常虎,赵天丞. 考虑轴向裂隙影响的岩体完整性计算模型. 岩石力学与工程学报. 2024(S2): 3972-3980 . 百度学术
    6. 肖浩汉,曹瑞琅,王玉杰,赵宇飞,孙彦鹏. 随钻监测数据预处理方法研究. 水利学报. 2024(11): 1379-1390 . 百度学术
    7. 王琦,高红科,冯帆. 岩体力学参数旋切钻进测试方法研究进展. 绿色矿山. 2024(04): 333-343 . 百度学术
    8. 徐海寒,秦昊,张辉,陈晓. 机器学习算法在岩性识别上的应用对比研究. 防护工程. 2024(06): 54-61 . 百度学术
    9. 岳中文,戴诗清,李杨,岳小磊,李世辉,曹武. 煤巷液压锚杆钻机随钻参数采集系统及其应用. 矿业科学学报. 2023(01): 66-73 . 百度学术
    10. 汪小刚. 岩体工程力学参数取值方法研究Ⅰ:原位试验与定量类比. 水利学报. 2023(01): 13-23 . 百度学术
    11. 贾连辉,陈帅,贾正文,荆留杰,陈强,牛孔肖. 钻爆法隧道智能建造体系及关键技术研究. 隧道建设(中英文). 2023(03): 392-407 . 百度学术
    12. 李明超,李明泽,韩帅,张佳文,赵文超. 耦合多源勘察信息的水工岩体完整性智能评价方法. 岩土工程学报. 2023(08): 1674-1683 . 本站查看
    13. 刘华吉,孙红林,张占荣,尤明龙,谭飞,李炜. 基于随钻参数的砂岩与砂质泥岩地层分界面智能识别. 隧道建设(中英文). 2023(S1): 304-312 . 百度学术
    14. 曹瑞琅,王玉杰,邢泊,赵宇飞,沈强. 基于冲击耗能指数定量评价岩石硬度试验研究. 岩土力学. 2023(09): 2619-2627 . 百度学术
    15. 许振浩,王朝阳,张津源,于东晓,林鹏,张啸,潘东东,李天昊. TBM隧道掘进地质感知与岩-机数字孪生:方法、现状与数智化发展方向. 应用基础与工程科学学报. 2023(06): 1361-1381 . 百度学术
    16. 冯上鑫,王善勇. 旋切作用下岩石破碎机理及岩石可钻性的试验研究. 煤炭学报. 2022(03): 1395-1404 . 百度学术
    17. 岳中文,岳小磊,杨仁树,王煦,李为,戴诗清,李杨. 随钻岩性识别技术研究进展. 矿业科学学报. 2022(04): 389-402 . 百度学术
    18. 杨启贵,张传健,颜天佑,刘琪,李建贺. 长距离调水工程建设与安全运行集成研究及应用. 岩土工程学报. 2022(07): 1188-1210 . 本站查看
    19. 徐振洋,吴怡璇,王雪松,刘鑫,郭连军,柴青平. 旋压钻进破岩的应力特征研究. 金属矿山. 2022(10): 24-29 . 百度学术
    20. 侯仕军,丁伟捷,田帅康,梁书锋,刘殿书. 随钻测量技术在非油气工程领域的应用现状与展望. 矿业研究与开发. 2022(12): 41-49 . 百度学术
    21. 庹晓军,刘强,曹瑞琅,赵宇飞,何瑞良. 基于随钻技术的振冲碎石桩施工质量评价方法研究. 水利水电快报. 2021(12): 59-64 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  316
  • HTML全文浏览量:  11
  • PDF下载量:  507
  • 被引次数: 31
出版历程
  • 收稿日期:  2014-04-28
  • 发布日期:  2015-01-19

目录

    /

    返回文章
    返回