Triaxial tests on creep characteristics of coastal soft soils
-
摘要: 为了研究滨海软黏土加速蠕变特性,采用典型的滨海相软黏土进行室内蠕变和加速蠕变试验,研究不同围压、加荷比、振动频率、动应力比对软黏土蠕变特性的影响,并通过对比得出了不同试验条件下滨海软黏土的加速蠕变的变化规律。试验结果表明:滨海软黏土具有非线性应力-应变关系的流变特性,其蠕变试验曲线呈衰减型,蠕变变形大部分应变量发生在蠕变前期,变形随时间增长趋于一个定值;静载作用下,围压越大初始蠕变速率越大。初始加荷压力一致,加荷比越大破坏应力越小。循环动荷载作用下,应变在动荷载阶段变化缓慢,而动荷载结束后进入稳定阶段后应变发生突变,急剧变大最后趋于稳定;此外在不同振动频率和动应力比下试样承受荷载等级不同,均存在一个临界安全荷载,超过这个临界值试样会发生蠕变破坏现象。Abstract: To explore the creep properties of typical structural soft clay in the coastal area of Tianjin, a series of triaxial creep tests are carried out considering the factors such as confining pressure, loading ratio, frequency and so on. The stress-strain-time curves of coastal soft clay under different conditions are obtained. According to the comparison of indoor tests between the original soils and the soils under different experimental conditions, the accelerated creep properties are found. The results show that the coastal silt clay in Tianjin exhibits nonlinear rheological properties of stress-strain, and its creep curves are attenuated. The creep deformation mostly occurs in its early stage, and the deformation tends to be a constant value with the passage of time. Under static loads, the greater the confining pressure, the greater the initial creep rate. Under the same initial loading pressure, the failure stress decreases with the increase of the loading ratio. Under cyclic loads and the same experimental conditions, there exist a structural yield stress and a critical frequency. Once exceeding the two critical value, the phenomenon of creep failure will occur.
-
Keywords:
- coastal soft clay /
- creep property /
- triaxial test /
- cyclic dynamic loading /
- critical safe load
-
[1] 沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报, 1998, 20(1): 156-162. (SHEN Zhu-jiang. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 156-162. (in Chinese)) [2] YASUHARA K, HIRAO K, HYODO M. Partial-drained behavior of clay under cyclic loading[C]// Proc 6th Int’1 Conf on Numerical Methods in Geomechanics. Rotterdam: Balkema, 1988: 659-664. [3] TARUMI N, SUNAGA M. Behaviours of low embankments on soft grounds during train passage[C]// Proc JSCF. 1988, (400/III-10): 1-11. (in Japanese) [4] 林永国, 廖少明, 刘国彬. 地铁隧道纵向变形影响因素的探讨[J]. 地下空间, 2000, 20(4): 264-267, 289. (LIN Yong-guo, LIAO Shao-ming, LIU Guo-bin. A discussion of the factors effecting on longitudinal deformation of subway tunnel[J]. Underground Space, 2000, 20(4): 264-267. (in Chinese)) [5] LO K Y. The pore pressure-strain relationship of normally consolidated undisturbed clays[J]. Canadian Geotechnical Journal, 1969, 6: 383-412. [6] MARSUI T, ITO T, OHARA H. Cyclic stress-strain history and shear characteristics of clay[J]. Journal of Geotech Eng Div, ASCE, 1980, 106(10): 1101-1120. [7] HYODO M, HYDE A F L, YAMAMOTO Y, et al. Cyclic shear strength of undisturbed and remoulded marine clays[J]. Soils and Foundations, 1999, 39(2): 45-48. [8] 周建, 龚晓南, 李剑强. 循环荷载作用下饱和软黏土特性试验研究[J]. 工业建筑, 2000, 30(11): 43-47. (ZHOU Jian, GONG Xiao-nan, LI Jian-qiang. Experimental study of saturated soft clay under cyclic loading[J]. Industrial Construction, 2000, 30(11): 43-47. (in Chinese)) [9] 唐益群, 黄雨, 叶为民. 地铁列车荷载作用下隧道周围土体的临界动应力比和动应变分析[J]. 岩石力学与工程学报, 2003, 22(9): 1566-1570. (TANG Yi-qun, HUANG Yu, YE Wei-min. Critical dynamic stress ratio and dynamic strain analysis of soils around the tunnel under subway train loading[J]. Chinese Journal of Rock Mechanics and Enigneering, 2003, 22(9): 1566-1570. (in Chinese)) [10] 唐益群, 张曦, 叶为民, 等. 地铁列车振动荷载作用下土体的动力特性和动强度研究[J]. 工程地质学报, 2004, 12: 98-101. (TANG Yi-qun, ZHANG Xi, YE Wei-min, et al. A study on dynamic strength and dynamic stress-strain relation of silt soil under traffic loading[J]. Journal of Engineering Geology, 2004, 12: 98-101. (in Chinese)) [11] 唐益群, 赵化, 王元东. 地铁荷载下隧道周围加固软黏土应变累积特性[J]. 同济大学学报(自然科学版), 2011, 39(7): 972-977. (TANG Yi-qun, ZHAO Hua, WANG Yuan-dong. Characteristics of strain accumulation of reinforced soft clay around tunnel under subway vibration loading[J]. Journal of Tongji University (Nature Science), 2011, 39(7): 972-977. (in Chinese)) [12] 张勇, 孔令伟, 郭爱国. 循环荷载下饱和软黏土的累积塑性应变试验研究[J]. 岩土力学, 2009, 3(6): 1542-1548. (ZHANG Yong, KONG Ling-wei, GUO Ai-guo. Cumulative plastic strain of saturated soft clay under cyclic loading[J]. Rock and Soil Mechanics, 2009, 3(6): 1542-1548. (in Chinese)) -
期刊类型引用(13)
1. 赵晶,陈诚,杜棣宾,文桃,简涛,应赛,周继强. 基于NMR的饱和土渗透系数预测方法. 山东大学学报(工学版). 2025(01): 108-116 . 百度学术
2. 李鸿玮,马丽娜,张彦辉,李柏生. 干湿循环下基于Wiener退化的水泥基复合加芯墙板寿命预测. 兰州理工大学学报. 2023(01): 22-29 . 百度学术
3. 韩立炜,姬伟斌. 降雨对膨胀土孔隙结构的影响研究. 人民黄河. 2023(05): 143-147+162 . 百度学术
4. 包义勇,程学磊,李文东,方大转,李顺群,赵磊. 膨胀土地基海绵化改造技术分析. 安徽建筑. 2023(06): 97-98 . 百度学术
5. 吴广水,田慧会,郝丰富,王书齐,杨文洲,祝婷梅. 基于核磁共振T_2时间分布快速预测不同干密度土体的渗透系数. 岩土力学. 2023(S1): 513-520 . 百度学术
6. 吴广水,王书齐,祝婷梅,杨文洲,施航向,赵延平. 初始含水率和干密度对膨胀土膨胀力影响的试验研究. 河南工程学院学报(自然科学版). 2023(04): 29-32+50 . 百度学术
7. 雷胜友,袁文治,翟志刚,田刚,陈雨菲,李思雨,芦地,柳明宇. 盐溶液质量分数对非饱和膨胀土抗剪强度的影响. 河南理工大学学报(自然科学版). 2022(02): 178-184 . 百度学术
8. 李宝平,支枭雄,张玉,平高权. NaCl溶液改良膨胀土滞回曲线形态特征. 科学技术与工程. 2022(13): 5322-5330 . 百度学术
9. 李宝平,支枭雄,张玉,平高权,杨倩. NaCl溶液改良膨胀土动力特性试验. 中国科技论文. 2022(07): 780-788 . 百度学术
10. 雷胜友,田刚,陈雨菲,袁文治,翟志刚. 考虑盐溶液渗入影响的膨胀土边坡稳定性分析. 中国科技论文. 2021(02): 150-157 . 百度学术
11. 陈君廉,李辉,谈云志. 盐溶液浸润下团粒膨润土的膨胀与渗透性能研究. 三峡大学学报(自然科学版). 2021(02): 80-85 . 百度学术
12. 邱翱博,王欢,张旭,曹义康,杨惠如. 粉砂土改良膨胀土渗透性与孔隙特性研究. 河南大学学报(自然科学版). 2021(05): 614-623 . 百度学术
13. 田芳. 冻融循环作用下膨胀土的力学与孔隙分布特点. 山东农业大学学报(自然科学版). 2020(02): 365-369 . 百度学术
其他类型引用(15)