• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

内外边界施加温度荷载的中空圆柱试样热固结试验

白冰, 张鹏远, 闫瑜龙, 秦禄盛, 王明亮

白冰, 张鹏远, 闫瑜龙, 秦禄盛, 王明亮. 内外边界施加温度荷载的中空圆柱试样热固结试验[J]. 岩土工程学报, 2015, 37(1): 67-74. DOI: 10.11779/CJGE201501007
引用本文: 白冰, 张鹏远, 闫瑜龙, 秦禄盛, 王明亮. 内外边界施加温度荷载的中空圆柱试样热固结试验[J]. 岩土工程学报, 2015, 37(1): 67-74. DOI: 10.11779/CJGE201501007
BAI Bing, ZHANG Peng-yuan, YAN Yu-long, QIN Lu-sheng, WANG Ming-liang. Consolidation tests on saturated soils subjected to thermal loading on inner and outer surfaces of hollow cylindrical specimens[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 67-74. DOI: 10.11779/CJGE201501007
Citation: BAI Bing, ZHANG Peng-yuan, YAN Yu-long, QIN Lu-sheng, WANG Ming-liang. Consolidation tests on saturated soils subjected to thermal loading on inner and outer surfaces of hollow cylindrical specimens[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 67-74. DOI: 10.11779/CJGE201501007

内外边界施加温度荷载的中空圆柱试样热固结试验  English Version

基金项目: 国家自然科学基金项目(11072265,11272353)
详细信息
    作者简介:

    白 冰(1966- ),男,博士,教授,博士生导师,主要从事复杂环境条件下岩土介质力学特性的研究。E-mail: baibing66@263.net。

  • 中图分类号: TU415

Consolidation tests on saturated soils subjected to thermal loading on inner and outer surfaces of hollow cylindrical specimens

  • 摘要: 研制了一个轴对称的适用于中空圆柱试样的热固结试验装置。该装置可独立施加和控制试样内、外的温度荷载,并保持试样径向温度梯度的存在,且可施加径向固结压力,适用于特定的温度和应力耦合作用路径的试验。进行了一种饱和黏性土的热固结试验,即在试样内边界和外边界交替逐级施加范围为25℃~75℃的温度荷载,包括径向压力为50,100,150,200 kPa的4种情形,分析了孔隙水压力及热固结体应变随时间的演化过程。研究表明,加热等级和加热次序不同,在同样的最终温度荷载下孔隙水压力稳定后的最大值有较大差异而体应变也不同,实际上反映了温度荷载作用路径对试样热固结效应的显著影响。
    Abstract: An axial thermal consolidation test apparatus suitable for saturated soils is developed. Using this apparatus, thermal loadings can be applied on both the inner and outer surfaces of a hollow cylindrical specimen separately. Thus, the specimen will be subjected to the effect of a gradient temperature along the diameter and also a lateral mechanical loading. This apparatus can be used for some special heating paths and mechanical loading paths. The consolidation of a saturated soil is accomplished, and the thermal loading on the inner and outer boundaries of the specimen is applied by steps alternately. The temperature range is 25℃~75℃, and the lateral pressures are 50, 100, 150, 200 kPa. The results show that the pore pressures and consolidation volumetric strains of the specimens induced by heating steps and various heating orders are very different even under the same state of temperature loading, which actually indicates the obvious influences of heating paths.
  • [1] POTHIRAKSANON C, BERGADO A T, ABUEL H M. Full-scale embankment consolidation test using prefabricated vertical thermal drains[J]. Soils and Foundations, 2010, 50(5): 599-608.
    [2] CUI Y J, TANG A M. On the chemo-thermo-hydro-mechanical behavior of geological and engineering barriers[J]. Journal of Rock and Geotechnical Engineering, 2013, 5: 169-178.
    [3] GHEMBAZA M S, TAIBI S, FLEUREAU J M. Thermo-hydro-mechanical behavior of a sandy clay on isotropic paths[J]. European Journal of Environmental and Civil Engineering, 2014, 18(2): 206-222.
    [4] MITCHELL J K, CAMPANELLA R G. Creep studies on saturated clays[C]// Laboratory Shear Testing of Soils: a Symposium, ASTM-NRC. Ottawa, 1963: 90-110.
    [5] DEMARS K P, CHARLES R D. Soil volume changes induced by temperature cycling[J]. Canadian Geotechnical Journal, 1982, 19: 188-194.
    [6] KUNTIWATTANAKUL P, TOWHATA I, OHISHI K, et al. Temperature effects on undrained shear characteristics on clay[J]. Soils and Foundations, 1995, 35(1): 147-162.
    [7] DE Bruyn D, THIMUS J F. The influence of temperature on mechanical characteristics of boom clay: the results of an initial laboratory program[J]. Engineering Geology, 1996, 41(1/2/3/4): 117-126.
    [8] WIEBE B, GRAHAM J, TANG G X, et al. Influence of pressure, saturation, and temperature on the behavior of unsaturated sand-bentonite[J]. Canadian Geotechnical Journal, 1998, 35: 194-205.
    [9] DELAGE P, SULTAN N, CUI Y J. On the thermal consolidation of Boom clay[J]. Canadian Geotechnical Journal, 2000, 37(4): 343-354.
    [10] CEKEREVAC C, LALOUI L, VULLIEF L. A novel triaxial apparatus for thermo-mechanical testing of soils[J]. Geotechnical Testing Journal, 2005, 28(2): 161-170.
    [11] 白冰, 陈星欣. 一种用于饱和土的热固结试验装置及其应用[J]. 岩土工程学报, 2011, 33(6): 896-900. (BAI Bing, CHEN Xing-xin. Test apparatus for thermal consolidation of saturated soils and its application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 896-900. (in Chinese))
    [12] BAI Bing, SU Zhong-qin. Thermal responses of saturated silty clay during repeated heating-cooling processes[J]. Transport in Porous Media, 2012, 93(1): 1-11
    [13] BAI Bing, GUO Lan-jie, HAN Song. Pore pressure and consolidation of saturated silty clay induced by progressively heating/cooling[J]. Mechanics of Materials, 2014, 75: 84-94.
    [14] MONFARED M, SULEM J, DELAGE P, et al. Temperature and drainage impact on the permerability of Opalinus clay[J]. Rock Mechanics and Rock Engineering, 2014, 47: 101-110.
    [15] PAASWELL R E. Temperature effects on clay soil consolidation[J]. Journal of soil Mechanics and Foundation Engineering Division, 1967, 93(3): 9-22.
    [16] TOWHATA I, KUNTIWATTANAKUL P, SEKO I, et al. Volume change of clays induced by heating as observed in consolidation tests[J]. Soils and Foundations, 1993, 33(4): 170-183.
    [17] ALEXANDER V, CHARLES J R, ABDALLA E, et al. Impact of the rate of heating on the thermal consolidation of saturated silt[C]// GeoCongress. ASCE, 2012: 4476-4485.
    [18] TSUTSUMI A, TANAKA H. Combined effect of strain rate and temperature on consolidation behavior of clayey soils [J]. Soils and Foundations, 2012, 52(2): 207-215.
    [19] ROMERO E, LLORET A, GENS A. Development of a new suction and temperature controlled oedometer cell[C]// Proceeding of 1st International Conference on Unsaturated Soils. Paris, 1995: 553-559.
    [20] 陈正汉, 谢云, 孙树国, 等. 温控土工三轴仪的研制及其应用[J]. 岩土工程学报, 2005, 27(8): 928-933. (CHEN Zheng-han, XIE Yun, SUN Shu-guo, et al. Temperature controlled triaxial apparatus for soils and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 928-933. (in Chinese))
    [21] 蔡国庆, 赵成刚, 白冰, 等. 温控非饱和土三轴试验装置的研制及其应用[J]. 岩土工程学报, 2012, 34(6): 1013-1019. (CAI Guo-qing, ZHAO Cheng-gang, BAI Bing, et al. A temperature controlled triaxial test systerm for unsaturated soils and its application[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1013-1019. (in Chinese))
    [22] ZHOU C, NG C W W. Experimental study of resilient modulus of unsaturated soil at different temperature[C]// Proceeding of the 18th ICSMGE. Paris, 2013: 1055-1058.
    [23] BAI Bing, LI Tao. Solutions for cylindrical cavity in saturated thermoporoelastic medium[J]. Acta Mechanica Solida Sinica, 2009, 22(1): 85-94.
    [24] BAI Bing. Thermal response of saturated porous spherical body containing a cavity under several boundary conditions[J]. Journal of Thermal Stresses, 2013, 36(11): 1217-1232.
    [25] BAI Bing. Fluctuation responses of saturated porous media subjected to cyclic thermal loading[J]. Computers and Geotechnics, 2006, 33(8): 396-403.
  • 期刊类型引用(21)

    1. 张琨,王珂,任建喜,冯上鑫,常鹏博,赵玉桃,苗彦平,胡俭. 随钻钻进参数优化下煤体原位应力响应特征解析. 煤田地质与勘探. 2025(02): 213-222 . 百度学术
    2. 赵同彬,赵志刚,齐炎山,尹延春,牛旭,李淇凡. 基于大直径钻孔钻进多参量的煤体应力钻测方法. 煤炭科学技术. 2025(01): 122-132 . 百度学术
    3. 李杨,王雁冰,岳小磊,岳中文,李为. 冲旋作用下随钻测量系统研发与应用. 采矿与安全工程学报. 2024(01): 114-122 . 百度学术
    4. 许振浩,邵瑞琦,林鹏,李术才,向航,韩涛,李珊. 隧道不良地质识别:方法、现状及智能化发展方向. 地球学报. 2024(01): 5-24 . 百度学术
    5. 查浩,魏玉峰,李树武,李常虎,赵天丞. 考虑轴向裂隙影响的岩体完整性计算模型. 岩石力学与工程学报. 2024(S2): 3972-3980 . 百度学术
    6. 肖浩汉,曹瑞琅,王玉杰,赵宇飞,孙彦鹏. 随钻监测数据预处理方法研究. 水利学报. 2024(11): 1379-1390 . 百度学术
    7. 王琦,高红科,冯帆. 岩体力学参数旋切钻进测试方法研究进展. 绿色矿山. 2024(04): 333-343 . 百度学术
    8. 徐海寒,秦昊,张辉,陈晓. 机器学习算法在岩性识别上的应用对比研究. 防护工程. 2024(06): 54-61 . 百度学术
    9. 岳中文,戴诗清,李杨,岳小磊,李世辉,曹武. 煤巷液压锚杆钻机随钻参数采集系统及其应用. 矿业科学学报. 2023(01): 66-73 . 百度学术
    10. 汪小刚. 岩体工程力学参数取值方法研究Ⅰ:原位试验与定量类比. 水利学报. 2023(01): 13-23 . 百度学术
    11. 贾连辉,陈帅,贾正文,荆留杰,陈强,牛孔肖. 钻爆法隧道智能建造体系及关键技术研究. 隧道建设(中英文). 2023(03): 392-407 . 百度学术
    12. 李明超,李明泽,韩帅,张佳文,赵文超. 耦合多源勘察信息的水工岩体完整性智能评价方法. 岩土工程学报. 2023(08): 1674-1683 . 本站查看
    13. 刘华吉,孙红林,张占荣,尤明龙,谭飞,李炜. 基于随钻参数的砂岩与砂质泥岩地层分界面智能识别. 隧道建设(中英文). 2023(S1): 304-312 . 百度学术
    14. 曹瑞琅,王玉杰,邢泊,赵宇飞,沈强. 基于冲击耗能指数定量评价岩石硬度试验研究. 岩土力学. 2023(09): 2619-2627 . 百度学术
    15. 许振浩,王朝阳,张津源,于东晓,林鹏,张啸,潘东东,李天昊. TBM隧道掘进地质感知与岩-机数字孪生:方法、现状与数智化发展方向. 应用基础与工程科学学报. 2023(06): 1361-1381 . 百度学术
    16. 冯上鑫,王善勇. 旋切作用下岩石破碎机理及岩石可钻性的试验研究. 煤炭学报. 2022(03): 1395-1404 . 百度学术
    17. 岳中文,岳小磊,杨仁树,王煦,李为,戴诗清,李杨. 随钻岩性识别技术研究进展. 矿业科学学报. 2022(04): 389-402 . 百度学术
    18. 杨启贵,张传健,颜天佑,刘琪,李建贺. 长距离调水工程建设与安全运行集成研究及应用. 岩土工程学报. 2022(07): 1188-1210 . 本站查看
    19. 徐振洋,吴怡璇,王雪松,刘鑫,郭连军,柴青平. 旋压钻进破岩的应力特征研究. 金属矿山. 2022(10): 24-29 . 百度学术
    20. 侯仕军,丁伟捷,田帅康,梁书锋,刘殿书. 随钻测量技术在非油气工程领域的应用现状与展望. 矿业研究与开发. 2022(12): 41-49 . 百度学术
    21. 庹晓军,刘强,曹瑞琅,赵宇飞,何瑞良. 基于随钻技术的振冲碎石桩施工质量评价方法研究. 水利水电快报. 2021(12): 59-64 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  340
  • HTML全文浏览量:  8
  • PDF下载量:  354
  • 被引次数: 31
出版历程
  • 收稿日期:  2014-03-09
  • 发布日期:  2015-01-19

目录

    /

    返回文章
    返回