• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于小应变特性的基坑开挖对邻近桩基影响分析方法

木林隆, 黄茂松

木林隆, 黄茂松. 基于小应变特性的基坑开挖对邻近桩基影响分析方法[J]. 岩土工程学报, 2014, 36(zk2): 304-310. DOI: 10.11779/CJGE2014S2054
引用本文: 木林隆, 黄茂松. 基于小应变特性的基坑开挖对邻近桩基影响分析方法[J]. 岩土工程学报, 2014, 36(zk2): 304-310. DOI: 10.11779/CJGE2014S2054
MU Lin-long, HUANG Mao-song. Small-strain behavior-based method for eflect of excavations on adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 304-310. DOI: 10.11779/CJGE2014S2054
Citation: MU Lin-long, HUANG Mao-song. Small-strain behavior-based method for eflect of excavations on adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 304-310. DOI: 10.11779/CJGE2014S2054

基于小应变特性的基坑开挖对邻近桩基影响分析方法  English Version

基金项目: 国家自然科学基金项目(51208378); 国家科技支撑计划(2013CB036304)
详细信息
    作者简介:

    木林隆(1984- ),男,博士,讲师,主要从事桩基与地下工程开挖方面的研究工作。E-mail: mulinlong@tongji.edu.cn。

Small-strain behavior-based method for eflect of excavations on adjacent pile foundations

  • 摘要: 越来越多的基坑紧邻既有建筑开挖,需要评估基坑开挖对邻近建筑的影响,因此基于变形控制的基坑设计已经成了必然要求。目前仍缺乏有效简单的方法去估算基坑开挖对邻近建筑的影响,特别是采用桩基础的建筑。而且当进行变形控制设计时,要求基坑变形控制在较小的范围内,此时基坑周边土体处在小应变范围内,要建立基坑开挖对周边建筑影响的分析方法必须考虑土体小应变特性。首先采用基于小应变特性计算基坑开挖引起的深层土体位移的经验计算公式计算基坑开挖引起的自由场土体三维位移,然后基于差分方法提出了基坑开挖对邻近桩基竖向和水平向影响的两阶段分析方法。通过与有限元结果的对比,验证了本方法的正确性。并分析了基坑开挖深度和桩基离基坑距离这两个因素对邻近桩基的响应的影响。研究表明开挖深度越小对桩基影响越小,基于桩基内力控制时,基坑开挖深度应避开桩底位置,且桩基在距离基坑0.5倍开挖深度距离时最为危险。
    Abstract: Estimating the damage potential on buildings induced by excavations is required because more and more foundation pits are excavated near the existing buildings. Thus, displacement control becomes a critical index of excavation design. Unfortunately, there is nearly no simplified method that can estimate the influence of excavation on the existing buildings and easy to be used. Small-strain behavior of soils should be considered when establishing method to estimate influence of excavation on the adjacent buildings for the strain of the soils is very small under displacement control design. In order to fit the requirement for the simplified method to estimate the influence on excavation on the existing buildings supported by pile foundation, a two-stage method is proposed herein to estimate the responses of piles adjacent to the excavation. Firstly, the empirical method based on small-strain behavior of soils proposed by Mu and Huang is employed to calculate the three-dimensional soil displacement induced by excavation. Then, a two-stage method is proposed to calculate the vertical and horizontal pile responses in layered soils. The method is verified through comparison with the results from FEM. And the influences of excavation depth and the distance between pile and retaining on pile responses are analyzed. The study shows that the additional force and deformation of piles increase with the increase of excavation depth, and the excavation base should avoid the base of the pile. It is most dangerous when the pile is 0.5H from the retaining wall.
  • [1] BURLAND J B. Ninth laurits bjerrum memorial lecture: “Small is beautiful”-the stiffness of soils at small strain[J]. Can Geotech, 1989(26): 499-516.
    [2] HRYCIW R D. Small-strain-shear modulus of soil by dilatometer[J]. Journal of Geotechnical Engineering, 1990, 116(11): 1700-1716.
    [3] BELLOTTI R, JAMIOLKOWSKI M, PRESTI D C F, et al. Anisotropy of small strain stiffness in TICINO sand[J]. Géotechnique, 1996, 46(1): 115-131.
    [4] HOYOS L R, SUESCUN E A, PUPPALA A J. Small-strain stiffness of unsaturated soils using a suction-controlled resonant column device with bender elements[C]// Proceedings of Geo-Frontiers 2011. Texas: Geo-Institute of ASCE, 2011.
    [5] CLAYTON C R I. Stiffness at small strain: research and practice[J]. Géotechnique, 2011, 61(1): 5-37.
    [6] WHITTLE A J, HASHASH Y M A, WHITMAN R V. Analysis of deep excavation in Boston[J]. J Geotech Eng, 1993, 119(1): 69-90.
    [7] KUNG G T C, OU C Y, JUANG C H. Modeling small-strain behavior of Taipei clays for finite element analysis of braced excavations[J]. Computers and Geotechnics, 2009, 36: 304-319.
    [8] XUAN F, XIA X, WANG J. The application of a small strain model in excavations[J]. Journal of Shanghai Jiaotong University (SCIENCE), 2009, 14(4): 418-422.
    [9] FINNO R J, LAWRENCE S A, ALLAWH N F, et al. Analysis of performance of pile groups adjacent to deep excavation[J]. Journal of Geotechnical Engineering, ASCE, 1991, 117(6): 934-955.
    [10] 杨 敏, 周洪波, 杨 烨. 基坑开挖与临近桩基相互作用分析[J]. 土木工程学报, 2005, 38(4): 93-96. (YANG MIN, ZHOU Hong-bo, YANG Ye. Numerical analysis of pile response due to unsupported excavation-induced lateral soil movement[J]. China Civil Engineering Journal, 2005, 38(4): 93-96. (in Chinese))
    [11] ILIADELIS D. Effect of deep excavation on an adjacent pile foundation[D]. Cambridge: Massachusetts Institute of Technology, 2006.
    [12] 陈福全, 汪金卫, 刘毓氚. 基坑开挖时临近桩基形状的数值分析[J]. 岩土力学, 2008, 29(7): 1971-1976. (CHEN Fu-quan, WANG Jin-wei, LIU Yu-chuan. Numerical analysis of pile response due to braced excavation-induced soil lateral movement[J]. Rock and Soil Mechanics, 2008, 29(7): 1971-1976. (in Chinese))
    [13] LEUNG C F, CHOW Y K, SHEN R F. Behavior of pile subject to excavation-induced soil movement[J]. J Geotech Geoenviron Eng, 2000, 126(11): 947-954.
    [14] LEUNG C F, LIM J K, SHEN R F, et al. Behavior of pile groups subject to excavation-induced soil movement[J]. J Geotech Geoenviron Eng, 2003, 129(1): 58-65.
    [15] GOH A T C, WONG K S, THE C I, et al. Pile response adjacent to braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 383-386.
    [16] ONG D E L, LEUNG C E, CHOW Y K. Pile behavior due to excavation-induced soil movement in clay. I: stable wall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(1): 36-44.
    [17] LEUNG C F, ONG D E L, CHOW Y K. Pile behavior due to excavation-induced soil movement in clay II: Collapsed Wall[J]. J Geotech Geoenviron Eng, 2006, 132(1): 45-53.
    [18] HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
    [19] FINNO R J, BLACKBURN J T, ROBOSKI J F. Three-dimensional effects for supported excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(1): 30-36.
    [20] KUNG G T C, JUANG C H, HSIAO E C L, et al. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 731-747.
    [21] BOONE J. Ground-movement-related building damage[J]. Journal of Geotechnical Engineering, 1996, 122(11): 886-896.
    [22] 张爱军, 莫海鸿, 李爱国, 等. 基坑开挖对邻近桩基影响的两阶段分析方法[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2746-2750. (ZHANG Ai-jun, MO Hai-hong, LI Ai-guo, et al. Two-stage analysis method for behavior of adjacent piles due to foundation pit excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2746-2750. (in Chinese))
    [23] 木林隆, 黄茂松. 基坑开挖引起的周边土体三维位移场的简化分析[J]. 岩土工程学报, 2013, 35(5): 1-8. (MU Linlong, HUANG Maosong. Simplified method for analysis of soil movement induced by excavations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 1-8. (in Chinese))
    [24] 木林隆. 分层地基中地下工程开挖对临近桩筏基础的影响分析[D]. 上海: 同济大学, 2012. (MU Lin-long. Analysis of responses of pile-rafts induced by underground excavations in layered soil[D]. Shanghai: Tongji University, 2012. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-27
  • 发布日期:  2014-07-27

目录

    /

    返回文章
    返回