• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

微型桩群加固土坡稳定性分析

孙书伟, 陈冲, 丁辉, 刘英

孙书伟, 陈冲, 丁辉, 刘英. 微型桩群加固土坡稳定性分析[J]. 岩土工程学报, 2014, 36(12): 2306-2314. DOI: 10.11779/CJGE201412020
引用本文: 孙书伟, 陈冲, 丁辉, 刘英. 微型桩群加固土坡稳定性分析[J]. 岩土工程学报, 2014, 36(12): 2306-2314. DOI: 10.11779/CJGE201412020
SUN Shu-wei, CHEN Chong, DING Hui, LIU Ying. Stability analysis of earth slopes reinforced with micropiles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2306-2314. DOI: 10.11779/CJGE201412020
Citation: SUN Shu-wei, CHEN Chong, DING Hui, LIU Ying. Stability analysis of earth slopes reinforced with micropiles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2306-2314. DOI: 10.11779/CJGE201412020

微型桩群加固土坡稳定性分析  English Version

基金项目: 国家自然科学基金项目(41002090); 中央高校基本科研业务费专项资金项目(2011QZ05)
详细信息
    作者简介:

    孙书伟(1980- ),男,副教授,主要从事岩土边坡工程方面的教学和科研。E-mail: ssw1216@163.com。

Stability analysis of earth slopes reinforced with micropiles

  • 摘要: 微型桩是一种边坡快速加固技术,多大面积成群布置。基于强度折减技术研究了微型桩群加固边坡安全系数的数值计算方法,并对微型桩群加固均质土坡和含软弱夹层土坡的稳定性进行了对比分析。结果表明,微型桩群加固均质土坡的破坏模式与其布设位置关系密切,采用传统非耦合方法假定滑动面位置不变进行微型桩群的工程设计值得商榷;对于均质土坡,微型桩群锚固深度较小时,桩身变形以刚性旋转为主,随着锚固深度的增加,微型桩群的变形由刚性倾斜转化为柔性弯曲变形,对于含软弱夹层边坡,微型桩群的变形主要是弯曲变形;微型桩群最优锚固长度约为滑面以上自由段长度的1.5~2.0倍。削剪作用能够改善微型桩群受力并降低成本;对于均质土坡,当削剪长度小于自由段长度1/4时,不会降低加固边坡的安全系数,对于含软弱夹层边坡,最大削剪长度约为自由段长度的1/2;实际工程中对于可削剪的微型桩部分,无需设计加筋体,仅将钻孔回填压实即可,能够在确保加固效果的同时降低成本。
    Abstract: Micropiles are common reinforcements often used for slope stabilization under emergency conditions. In many circumstances they are extensively installed to cover a large area. A flow chart was suggested to calculate the factor of safety for micropile-reinforced slopes according to the shear strength reduction technique. Coupled analyses are performed for micropiles in a homogeneous slope with and without a thin weak layer. It is shown that the position of the micropiles has a significant impact on the failure mode of the reinforced slope for a homogeneous slope, indicating that the conventional design method based on uncoupled analysis in which the pile response and slope stability are considered separately is inaccurate. For relatively small embedment of micropiles, the response of micropiles is dominated by rigid-body rotation without substantial flexural distortion. The critical embedment depth to achieve fixed conditions at the base of the micropiles is found to range from 1.5 to 2 times the length above the sliding plane. Truncation of micropiles likely increases the capacity of the reinforcement system, and this benefit is particularly important for the slope with a thin weak layer. The largest truncation length of micropiles for homogeneous slopes and the slope with a thin weak layer is about 1/4 and 1/2 times the length above the sliding plane, respectively. The portion of truncated micropiles can be filled with soils and compacted in the standard procedure to decrease the cost in practice engineering.
  • [1] D R, PE M. Buckling of micropiles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133: 334-337.
    [2] 王 新. 微型桩复合结构在滑坡整治中的应用[J]. 岩土工程技术, 2004, 18(1): 47-50. (DING Guang-wen, WANG Xin. Application of micropiling compound structure in a landslide treatment engineering[J]. Geotechnical Engineering Technique, 2004, 18(1): 47-50. (in Chinese))
    [3] 凯, 刘小丽, 苏媛媛. 微型抗滑桩的应用发展研究现状[J]. 岩土力学, 2008, 28(增刊): 675-679. (LIU Kai, LIU Xiao-li, SU Yuan-yuan. Research on application development of anti-slide micropiles[J]. Rock and Soil Mechanics, 2008, 28(S0): 675-679. (in Chinese))
    [4] D A, DIMILLIO A F, JURAN I. A primer on micropiles[J]. Civil Engineering Magazine, 1995, 65: 51-54.
    [5] 君, 周德培, 江 南,等. 微型桩体系加固顺层岩质边坡的内力计算模式[J]. 岩石力学与工程学报, 2006, 25(2): 284-288. (FENG Jun, ZHOU De-pei, JIANG Nan, et al. A model for calculation of internal force of micropile system to reinforce bedding rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 284-288. (in Chinese))
    [6] F. Special patented systems of underpinning and more generally, subsoil strengthening by means of pali radice (root piles) with special reference to problems arising from the construction of subways in built-up area[R]. Urbana- Champaign: Special Lecture given at university of Illinois at Urbana-Champaign, 1971.
    [7] 孙书伟, 郑 静. 微型桩群加固堆积层滑坡原位试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2858-2864. (ZHU Ben-zhen, SUN Shu-wei, ZHENG Jing. In-situ testing study of accumulative formation landslide reinforced by micropile group[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2858-2864. (in Chinese))
    [8] S W, ZHU B Z, WANG J C. Design method for stabilization of earth slopes with micropiles[J]. Soils and Foundations, 2013, 53(4): 487-497.
    [9] G G, SASTRY V, YALCIN A S. Lateral resistance and deflection of flexible piles[J]. Canadian Geotechnical Journal, 1988, 25(3): 511-522.
    [10] 王庭勇, 马 莉. 微型抗滑桩双排单桩与组合桩抗滑特性研究[J]. 岩石力学与工程学报, 2012, 31(7): 1499-1505. (HU Yi-fu, WANG Ting-yong, MA Li. Research on anti-sliding characteristics of single double-row and composite anti-slide micropiles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1499-1505. (in Chinese))
    [11] 正, 梅 岭, 梅国雄. 柔性微型桩水平承载力数值模拟[J]. 岩土力学, 2011, 32(7): 2219-2224. (CHENG Zheng, MEI Ling, MEI Guo-xiong. Numerical simulation of lateral bearing capacity of flexible micropile[J]. Rock and Soil Mechanics, 2012, 31(7): 2219-2224. (in Chinese))
    [12] M, ISAM S. Three-dimensional finite element analysis of the seismic behavior of inclined micropiles[J]. Soil Dynamics and Earthquake Engineering, 2004, 24: 473-485.
    [13] Fast Lagrangian analysis of continua in 3 dimensions[M]. Minnesota: Itasca Consulting Group, Inc, 2005.
    [14] O C, HUMPHESON C L, LEWIS R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Géotechnique, 1975, 25(4): 671-689.
    [15] E M, ROTH C L, DRESCHER A. Slope stability analysis by strength reduction[J]. Géotechnique, 1999, 49(6): 835-840.
    [16] F, UGAI K. Numerical analysis of the stability of a slope reinforced with piles[J]. Soils and Foundations, 2000, 40(1): 73-84.
    [17] J, YOU K, JEONG S. Coupled effects in stability analysis of pile-slope systems[J]. Computers and Geotechnics, 2005, 32: 304-315.
    [18] R, GEOLAGOTI F, ANASTASOPOULOS I, et al. Slope stabilizing piles and pile-groups: parametric study and design insights[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(7): 663-677.
计量
  • 文章访问数:  523
  • HTML全文浏览量:  8
  • PDF下载量:  566
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-05
  • 发布日期:  2014-12-25

目录

    /

    返回文章
    返回