• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

花岗岩在化学溶蚀和冻融循环后的力学性能试验研究

陈有亮, 王朋, 张学伟, 杜曦

陈有亮, 王朋, 张学伟, 杜曦. 花岗岩在化学溶蚀和冻融循环后的力学性能试验研究[J]. 岩土工程学报, 2014, 36(12): 2226-2235. DOI: 10.11779/CJGE201412010
引用本文: 陈有亮, 王朋, 张学伟, 杜曦. 花岗岩在化学溶蚀和冻融循环后的力学性能试验研究[J]. 岩土工程学报, 2014, 36(12): 2226-2235. DOI: 10.11779/CJGE201412010
CHEN You-liang, WANG Peng, ZHANG Xue-wei, DU Xi. Experimental research on mechanical properties of granite in chemical dissolution under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2226-2235. DOI: 10.11779/CJGE201412010
Citation: CHEN You-liang, WANG Peng, ZHANG Xue-wei, DU Xi. Experimental research on mechanical properties of granite in chemical dissolution under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2226-2235. DOI: 10.11779/CJGE201412010

花岗岩在化学溶蚀和冻融循环后的力学性能试验研究  English Version

基金项目: 上海市自然科学基金项目(14ZR1428200)
详细信息
    作者简介:

    陈有亮(1966- ),男,教授,主要从事岩土工程方面的科研工作。E-mail: chenyouliang2001@yahoo.com.cn。

    通讯作者:

    王朋

Experimental research on mechanical properties of granite in chemical dissolution under freeze-thaw cycles

  • 摘要: 通过研究花岗岩在不同化学溶液(水、NaOH溶液和HNO3溶液)中浸泡并冻融循环后的力学性能,分析了花岗岩在不同化学溶液中溶蚀及经历不同冻融循环次数后,在单轴压缩作用下基本力学性能的变化规律;从微观力学和化学机理出发,探讨了化学溶蚀和冻融循环对花岗岩的损伤机理;通过定义损伤变量,定量分析了花岗岩的损伤程度。试验结果表明,在水、NaOH和HNO3溶液中,随着冻融循环次数的增加,花岗岩的相对杨氏模量呈指数函数减小,峰值应力损失率呈幂函数增加;轴向峰值应变按Guass函数变化。随着冻融循环次数的增加,HNO3溶液中的花岗岩初期损伤劣化较大,后期损伤劣化较小,而NaOH溶液中的花岗岩初期损伤劣化较小,后期损伤劣化较大。岩石冻融损伤的过程本质上是温度产生的应力,使岩石损伤劣化的过程;同时化学溶蚀对岩石产生化学损伤作用,与冻融损伤相互促进,共同影响岩石的损伤劣化。
    Abstract: The variation of mechanical properties of granite under uniaxial compression after being soaked in different chemical solutions (water, NaOH solution and HNO3 solution) and subjected to different freeze-thaw cycles is experimentally studied. The damage mechanism of granite subjected to chemical soaking and freeze-thaw cycles is analyzed according to the micro mechanism and chemical mechanism. In addition, a damage variable is defined in terms of which the damage degree of granite can be analyzed quantitatively. The test results show that for all the chemical solutions (water, NaOH solution and HNO3 solution), with the increase of freeze-thaw cycles, the relative Young’s modulus decreases by exponential function, the loss rate of the peak stress increases by power function, and the axial peak strain changes by Guass function. With the increase of freeze-thaw cycles, the damage and deterioration of granite in HNO3 solution is larger at a smaller number of freeze-thaw cycles than that at a larger number of freeze-thaw cycles, while an opposite phenomenon is found for granite soaked in NaOH solution. The process of freeze-thaw damage is essentially a process in which the granite is damaged gradually by thermal stresses, meanwhile, the chemical damage produced by chemical dissolution together with the freeze-thaw damage can give mutual effects on the damage and deterioration of granite.
  • [1] 陈四利, 冯夏庭, 李邵军. 化学腐蚀对黄河小浪底砂岩力学特性的影响[J]. 岩土力学, 2002, 23(3): 284-287. (CHEN Si-li, FENG Xia-ting, LI Shao-jun. The effects of chemical erosion on mechanical behaviors of Xiaolangdi sandstone[J]. Rock and Soil Mechanics, 2002, 23(3): 284-287. (in Chinese))
    [2] 陈四利, 冯夏庭, 李邵军. 岩石单轴抗压强度与破裂特征的化学腐蚀效应[J]. 岩石力学与工程学报, 2003, 22(4): 547-551. (CHEN Si-li, FENG Xia-ting, LI Shao-jun. Effects of chemical erosion on uniaxial compressive strength and meso-fracturing behaviors of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 547-551. (in Chinese))
    [3] 丁梧秀, 冯夏庭. 灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨[J]. 岩石力学与工程学报, 2005, 24(8): 1283-1288. (DING Wu-xiu, FENG Xia-ting. Study on chemical damage effect and quantitative analysis method of meso-structure of limestone[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1283-1288. (in Chinese))
    [4] 丁梧秀. 水化学作用下岩石变形破裂全过程实验与理论分析[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005. (DING Wu-xiu. Experimental and theoretical analysis on rock failure process under chemical environment[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2005. (in Chinese))
    [5] 李 宁, 朱运明, 张 平, 等. 酸性环境中钙质胶结砂岩的化学损伤模型[J]. 岩土工程学报, 2003, 25(4): 395-399. (LI Ning, ZHU Yun-ming ZHANG Ping, et al. A chemical damage model of sandstone in acid environment[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 395-399. (in Chinese))
    [6] FENG X T, SETO M. Neural network dynamic modeling of acoustic emission sequences in rock[J]. Safety Engineering, 1998, 37(3): 157-163.
    [7] FENG X T, SETO M. A new method of modeling the rock-microfracturing process in double torsion experiments using neural networks[J]. International Journal of Analytic and Numerical Methods in Geomechanics, 1999(23): 905-923.
    [8] FENG X T, LI T J, SETO M. Nonlinear evolution properties of rock microfracturing affected by environment[J]. Key Engineering Material, 2000, 182: 713-718.
    [9] 杨更社, 张全胜, 蒲毅彬. 冻结温度对岩石细观损伤扩展特性影响研究初探[J]. 岩土力学, 2004, 25(9): 1409-1412. (YANG Geng-she, ZHANG Quan-sheng, PU Yi-bin. Preliminary study on meso-damage propagation characteristics of rock under condition of freezing temperature[J]. Rock and Soil Mechanics, 2004, 25(9): 1409-1412. (in Chinese))
    [10] 何国梁, 张 磊, 吴 刚. 循环冻融条件下岩石物理特性的试验研究[J]. 岩土力学, 2004, 25(增刊2): 52-56. (HE Guo-liang, ZHANG Lei, WU Gang. Test study on physical characteristics of rock under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2004, 25(S2): 52-56. (in Chinese))
    [11] HORI M, MORIHIRO H. Micromechanical analysis of deterioration due to freezing and thawing in porous brittle materials[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 36(4): 511-522.
    [12] DL/T 5368—2007 水电水利工程岩石试验规程[S]. 2007. (DL/T 5368—2007 Code for rock tests of hydroelectric and water conservancy engineering[S]. 2007. (in Chinese))
    [13] 左建平, 谢和平, 周宏伟, 等. 温度-拉应力共同作用下砂岩破坏的断口形貌[J]. 岩石力学与工程学报, 2007, 26(12): 2444-2457. (ZUO Jian-ping, XIE He-ping, ZHOU Hong-wei, et al. Fractography of sandstone failure under temperature-tensile stress coupling effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2444-2457. (in Chinese))
    [14] 冯夏庭, 丁梧秀, 姚华彦, 等. 岩石破裂过程的化学-应力耦合效应[M]. 北京: 科学出版社, 2010: 27-28. (FENG Xia-ting, DING Wu-xiu, YAO Hua-yang, et al. Coupled chemical-stress effect on rock fracturing process[M]. Beijing: Science Press, 2010: 27-28. (in Chinese))
    [15] 刘 楠. 岩石冻融力学实验及水热力耦合分析[D]. 西安: 西安科技大学, 2010. (LIU Nan. Analysis on freeze-thaw cycling and mechanical experiment and thermo-hydro- mechanics coupling of rock[D]. Xi'an: Xi'an University of Science and Technology, 2010. (in Chinese))
计量
  • 文章访问数:  379
  • HTML全文浏览量:  13
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-18
  • 发布日期:  2014-12-25

目录

    /

    返回文章
    返回