• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

页岩气储层变排量压裂的造缝机制

侯冰, 陈勉, 程万, 谭鹏

侯冰, 陈勉, 程万, 谭鹏. 页岩气储层变排量压裂的造缝机制[J]. 岩土工程学报, 2014, 36(11): 2149-2152. DOI: 10.11779/CJGE201411023
引用本文: 侯冰, 陈勉, 程万, 谭鹏. 页岩气储层变排量压裂的造缝机制[J]. 岩土工程学报, 2014, 36(11): 2149-2152. DOI: 10.11779/CJGE201411023
HOU Bing, CHEN Mian, CHENG Wan, TAN Peng. Fracturing mechanism of shale gas reservoir with variable pump rates[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2149-2152. DOI: 10.11779/CJGE201411023
Citation: HOU Bing, CHEN Mian, CHENG Wan, TAN Peng. Fracturing mechanism of shale gas reservoir with variable pump rates[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2149-2152. DOI: 10.11779/CJGE201411023

页岩气储层变排量压裂的造缝机制  English Version

基金项目: 国家自然科学基金创新研究群体科学基金项目(51221003); 国家自然科学基金项目(51204195,51234006); 北京青年英才计划项目(YETP0672)
详细信息
    作者简介:

    侯冰(1979-),辽宁北镇人,男,副研究员,主要从事油气井岩石力学与工程的研究。E-mail:houbing9802@163.com。

Fracturing mechanism of shale gas reservoir with variable pump rates

  • 摘要: 裂缝性页岩储层压裂时,如何通过调节压裂泵排量,使水力裂缝沟通更多天然裂缝,是缝网压裂的关键。选取龙马溪组页岩露头开展真三轴水力压裂试验,压裂过程中以逐步阶梯式方式提高排量,实时分析变排量压裂时水力裂缝扩展行为以及与天然裂缝的沟通情况。试验结果表明:采用变排量压裂,初始阶段,随着压力逐渐升高,会在井筒周围的弱面附近产生多个待破裂点,随排量突然提高会使水力裂缝沿着多个破裂点动态分叉扩展。随着排量阶梯式升高,泵压明显升高,排量越大,泵压波动越大,水力裂缝与天然裂缝沟通形态越复杂,天然裂缝产状和缝内净压力等影响到水力裂缝进一步沟通程度。试验结果证实,变排量压裂可以激活更多天然裂缝,有助于形成复杂裂缝网络。
    Abstract: Strengthening the interaction between hydraulic fractures and natural fractures by the adjustment of pump pressure is the key of fracture network. Longmaxi shale outcrops are selected to study the propagation of hydraulic fractures and the interaction between hydraulic fractures and natural fractures by utilizing tri-axial fracturing test system. The pump pressure increases in a step-wise manner during the tests. The experimental results indicate that the variable pump rates can gradually build the pressure, which generates many under-fracture points in weak planes around the wellbore. Hydraulic fractures will have dynamic extension along these under-fracture points when there is a sudden increase of pump rate. As the pump rate increases in a step-wise manner, the pump pressure significantly increases. Higher pump rate leads to a more fluctuant pump pressure and a more complex fracture network. The occurrence and geometric distribution of natural fractures and net pressure can influence the degree of further interaction. The results prove that the variable pump rates can activate more natural fractures, which contributes to form complex fracture network.
  • [1] DANESHY A A. Hydraulic fracture propagation in the presence of planes of weakness[R]. SPE 4852, 1974.
    [2] WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220.
    [3] RENSHAW C E, POLLARD D D. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(3): 237-249.
    [4] ZHOU J, XUE Cheng-jin. Experimental investigation of fracture interaction between natural fractures and hydraulic fracture in naturally fractured reservoirs[C]// Annual of Conference Exhibition and Society of Petroleum Engineering, 2011.
    [5] ZHOU Jian, CHEN Mian, JIN Yan, et al. Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1143-1152.
    [6] TALEGHANI A D, OLSON J E. Numerical modeling of multistranded-hydraulic fracture propagation: Accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575-581.
    [7] TALEGHANI A D. Modeling simultaneous growth of multi-branch hydraulic fractures[C]// ARMA. San Francisco, 2011.
    [8] GU H, WENG X. Criterion for fractures crossing frictional interfaces at nonorthogonal angles[C]// ARMA. Salt Lake City, 2010.
    [9] CHENG Wan, JIN Yan, CHEN Mian, et al. A criterion for a hydraulic fracture crossing a natural fracture in a 3D space and its field application[J]. Petroleum Exploration & Development, 2014, 41(2): 1-6.
    [10] ZHAO Hai-feng, CHEN Mian, JIN Yan, et al. Rock fracture kinetics of the fracture mesh system in shale gas reservoirs[J]. Petroleum Exploration and Development, 2012, 39(4): 465-470.
    [11] 陈 勉. 页岩气储层水力裂缝转向扩展机制[J]. 中石油大学学报(自然科学版), 2013,37(5): 88-94. (CHEN Mian. Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J]. Journal of China University of Petroleum. 2013, 37(5): 88-94. (in Chinese))
    [12] 柳贡慧, 庞 飞, 陈治喜. 水力压裂模拟试验中的相似准则[J]. 石油大学学报(自然科学版), 2000, 24(5): 45-50. (LIU Gong-hui, PANG Fei, CHEN Zhi-xi. Fracture simulation tests[J]. Journal of China University of Petroleum. 2000, 24(5): 45-50. (in Chinese))
计量
  • 文章访问数:  459
  • HTML全文浏览量:  2
  • PDF下载量:  818
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-08
  • 发布日期:  2014-11-19

目录

    /

    返回文章
    返回