• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

多层介质寒区公路隧道保温层厚度计算的一种解析方法

冯强, 蒋斌松

冯强, 蒋斌松. 多层介质寒区公路隧道保温层厚度计算的一种解析方法[J]. 岩土工程学报, 2014, 36(10): 1879-1887. DOI: 10.11779/CJGE201410016
引用本文: 冯强, 蒋斌松. 多层介质寒区公路隧道保温层厚度计算的一种解析方法[J]. 岩土工程学报, 2014, 36(10): 1879-1887. DOI: 10.11779/CJGE201410016
FENG Qiang, JIANG Bin-song. Analytical method for insulation layer thickness of highway tunnels with multilayer dielectric in cold regions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1879-1887. DOI: 10.11779/CJGE201410016
Citation: FENG Qiang, JIANG Bin-song. Analytical method for insulation layer thickness of highway tunnels with multilayer dielectric in cold regions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1879-1887. DOI: 10.11779/CJGE201410016

多层介质寒区公路隧道保温层厚度计算的一种解析方法  English Version

基金项目: 国家自然科学基金项目(51174196); 国家自然科学基金青年基金项目(51309222); 江苏省自然科学基金青年基金项目(BK20130193)
详细信息
    作者简介:

    冯 强(1985- ),男,山东乳山人,讲师,博士,主要从事岩石力学理论与工程研究。E-mail: fqcumt@163.com。

Analytical method for insulation layer thickness of highway tunnels with multilayer dielectric in cold regions

  • 摘要: 新疆天山的玉希莫勒盖隧道处于高海拔季节性冻土地区,为防止冻害的发生,需要对所需保温层厚度进行研究。针对这一问题建立计算模型,采用Laplace积分变换的方法得到了由于保温作用而没有相变发生时寒区隧道温度场的解析分析方法;通过与stehfest方法对比分析,基于高斯正交法则和快速Fourier变换的Den Iseger方法具有更好的稳定性和准确性,采用该数值反演方法进行Laplace逆变换的求解。根据对玉希莫勒盖隧道的分析表明,保温层、衬砌与围岩中的温度都随着大气温度呈简谐振动;现场采用的5 cm厚保温层内外温差达9.63℃,不能保证该隧道围岩不发生冻胀现象;要保证其在设计年限内不发生冻胀所需要的最小保温层厚度为27 cm;通过对相关物理参数的分析表明:对流换热系数对固体介质的表面温度的最值影响较大,但对保温层厚度的影响较小;随着年平均气温的升高所需保温层的厚度越小,保证的安全年限越长,厚度也越大;随着地层温度的升高,所需保温层厚度逐渐减小;最后对年平均气温和地层温度的不同组合情况进行拟合分析,得出保温层厚度与这两因素的相关关系,可为该地区其他隧道的设计提供参考。
    Abstract: Yuximolegai tunnel at Tianshan Mountain of Xinjiang is built in a seasonal frozen region. The thickness of insulation layer needs to be determined against frozen damage. For the solution to this problem, a model is established. When the insulation layer has good effect and no phase change occurs, the Laplace integral transform is employed to solve the temperature field of cold-region tunnels. Compared with the stability and accuracy of the stehfest method, those of the Den Iseger method, which is based on the Gaussian quadrature rule and the fast Fourier transform, are better. Thus, this method is used to solve the inversion of Laplace transform. Based on the results of Yuximolegai tunnel, it is shown that the temperatures of the insulation layer, the linings and the surrounding rocks follow the law of simple harmonic vibration with air temperature. Since the temperature difference between the two edges of 5 cm-thick insulation layer attains 9.63℃, it can not protect the surrounding rock against frozen heave. If the tunnel needs to be protected well in design period, the thickness of insulation layer should be 27 cm at least. Based on the parameter analysis, although the influence of convective heat transfer coefficient on solid surface is large, the influence on thickness of the insulation layer is limited. The insulation layer should decrease with the increase of the annual mean temperature and increase with the safe time of tunnels. With the increase of ground temperature, the thickness of insulation layer reduces gradually. Finally, by analyzing the annual mean temperature and ground temperature, the relationship between this two factors and the thickness of insulation layer is established, which may provide the basis for the design of other tunnels in this region.
  • [1] 张学富, 喻文兵, 刘志强. 寒区隧道渗流场和温度场耦合问题的三维非线性分析[J]. 岩土工程学报, 2006, 28(9): 1095-1100. (ZHANG Xue-fu, YU Wen-bing, LIU Zhi-qiang. Three-dimensional nonlinear analysis for coupled problem of seepage field and temperature field of cold regions tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1095-1100. (in Chinese))
    [2] BONACINA C, COMINI G, FASANO A, et al. Numerical solution of phase-change problems[J]. Int J Heat Mass Transfer, 1973, 16(6): 1852-1832.
    [3] TAKUMI K, TAKASHI M, KOUICHI F. An estimation of inner temperature at cold region tunnel for heat insulator design[J]. Journal of Structural Engineering (A), 2008, 54(A): 32-38.
    [4] LAI Yuan-ming, LIU Song-yu, WU Zi-wang, et al. Approximate analytical solution for temperature fields in cold regions circular tunnels[J]. Cold Regions Science and Technology, 2002, 13(4): 43-49.
    [5] 张学富, 赖远明, 喻文兵, 等. 寒区隧道温度场三维空间非线性分析[J]. 土木工程学报, 2004, 37(2): 47-53. (ZHANG Xue-fu, LAI Yuan-ming, YU Wen-bing, et al. Nonlinear analysis for the three-dimensional temperature fields in cold region tunnels[J]. Journal of Civil Engineering, 2004, 37(2): 47-53. (in Chinese))
    [6] 张 耀, 何树生, 李靖波. 寒区有隔热层圆形隧道温度场解析计算[J]. 冰川冻土, 2009, 31(1): 113-118. (ZHANG Yao, HE Shu-sheng, LI Jing-bo. Analytic solutions for the temperature fields of a circular tunnel with insulation layer in cold region[J]. Journal of glaciology and geocryology, 2009, 31(1): 113-118. (in Chinese))
    [7] 冯强, 蒋斌松. 寒区隧道温度场Laplace变换解析计算[J]. 采矿与安全工程学报, 2012, 29(3): 391-395. (FENG Qiang, JIANG Bin-song. Analytical calculation on temperature field of tunnels in cold region by laplace integral transform[J]. Journal of Mining and Safety Engineering, 2012, 29(3): 391-395. (in Chinese))
    [8] 夏才初, 张国柱, 肖素光. 考虑衬砌和隔热层的寒区隧道温度场解析解[J]. 岩石力学与工程学报, 2010, 29(9): 1767-1773. (XIA Cai-chu, ZHANG Guo-zhu, XIAO Su-guang. Analytical solution to temperature fields of tunnel in cold region considering lining and insulation layer[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1767-1773. (in Chinese))
    [9] TOUTAIN J, BATTAGLIA J L, et al. Numerical inversion of laplace transform for time resolved thermal characterization experiment[J]. Journal of Heat Transfer, 2011, 133(4): 1-3.
    [10] Peter den Iseger. Numerical transform inversion using Gaussian quadrature[J]. Probability in Engineering and Informational Sciences, 2006, 20(1): 1-44.
    [11] 刘利强. Laplace反变换的一种数值算法[J]. 内蒙古工业大学学报, 2002, 21(1): 47-49. (LIU Li-qiang. The inverse Laplace transform in numerical form[J]. Journal of Inner Mongo Lia University of Technology, 2002, 21(1): 47-49. (in Chinese))
    [12] 王照亮, 张克舫, 李华玉. 一种求解复合圆筒壁非稳态导热问题的新方法[J]. 石油大学学报, 2005, 29(2): 89-92. (WANG Zhao-liang, ZHANG Ke-fang, LI Hua-yu. A new approximate solution for multiple-layer cylindrical walls of unsteady-state heat conduction[J]. Journal of the University of Petroleum, China, 2005, 29(2): 89-92. (in Chinese))
    [13] 谢鸿政, 杨枫林. 数学物理方程[M]. 北京: 科学出版社,2008: 272-287. (XIE Hong-zheng, YANG Feng-lin. Differential equations in mathematical physics[M]. Beijing: Science Press, 2008: 272-287. (in Chinese))
    [14] 于 涛. 数学物理方程与特殊函数[M]. 北京: 科学出版社, 2008. (YU Tao. Differential equations in mathematical physics and special function[M]. Beijing: Science Press, 2008. (in Chinese))
计量
  • 文章访问数:  298
  • HTML全文浏览量:  3
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-16
  • 发布日期:  2014-10-19

目录

    /

    返回文章
    返回