• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土液化后再固结体变规律表征与离心模型试验验证

周燕国, 李永刚, 丁海军, 陈云敏, 凌道盛, 石川明, 社本康広

周燕国, 李永刚, 丁海军, 陈云敏, 凌道盛, 石川明, 社本康広. 砂土液化后再固结体变规律表征与离心模型试验验证[J]. 岩土工程学报, 2014, 36(10): 1838-1845. DOI: 10.11779/CJGE201410011
引用本文: 周燕国, 李永刚, 丁海军, 陈云敏, 凌道盛, 石川明, 社本康広. 砂土液化后再固结体变规律表征与离心模型试验验证[J]. 岩土工程学报, 2014, 36(10): 1838-1845. DOI: 10.11779/CJGE201410011
ZHOU Yan-guo, LI Yong-gang, DING Hai-jun, CHEN Yun-min, LING Dao-sheng, ISHIKAWA Akira, SHAMOTO Yasuhiro. Characterization of reconsolidation volumetric strain of liquefied sand and validation by centrifuge model tests[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1838-1845. DOI: 10.11779/CJGE201410011
Citation: ZHOU Yan-guo, LI Yong-gang, DING Hai-jun, CHEN Yun-min, LING Dao-sheng, ISHIKAWA Akira, SHAMOTO Yasuhiro. Characterization of reconsolidation volumetric strain of liquefied sand and validation by centrifuge model tests[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1838-1845. DOI: 10.11779/CJGE201410011

砂土液化后再固结体变规律表征与离心模型试验验证  English Version

基金项目: 国家自然科学基金项目(51127005,51178427); 973项目课题(2014CB047005,2012CB719801); 全国优博论文作者专项(201160); “国家特支计划”青年拔尖人才项目(2012); 中央高校基本科研业务费专项资金项目(2014FZA4016)
详细信息
    作者简介:

    周燕国(1978- ),男,博士,副教授,博士生导师,主要从事土动力学与岩土地震工程、土工离心机物理模拟方面的研究和教学工作。E-mail: qzking@zju.edu.cn。

Characterization of reconsolidation volumetric strain of liquefied sand and validation by centrifuge model tests

  • 摘要: 针对一定相对密度的饱和砂土,首先开展单元体K0固结试验和振动液化试验研究,发现饱和砂土液化后体变规律受再沉积和再固结两种机制制约:其中再沉积部分与所受振动历史密切相关,尤其是液化触发后的应变历史,土骨架累积剪应变比越大、再沉积体变越大;而再固结部分受先期固结历史和循环振动历史影响显著,再固结曲线会沿原有正常固结曲线趋势发展,其稳定段再压缩指数比相同条件下的正常固结曲线的压缩指数稍大。据此提出了考虑先期固结和振动历史的砂土液化后体变模型和简化算法,将再沉积和再固结两者统一表达成再固结体变,并建议了再固结压缩指数和假设起始应力的确定方法。进一步开展了水平场地地震液化离心机模型试验,监测模型固结和振动液化过程的沉降,从模型尺度进一步揭示砂土液化后体变规律,并初步验证了本文模型与简化算法的有效性。
    Abstract: The results of consolidation tests under K0 condition and cyclic triaxial tests on Fujian sand at a given relative density are introduced, and the mechanism of the liquefaction-induced volumetric strain is revealed, which is composed of the re-sedimentation and the re-consolidation processes. The re-sedimentation is closely related to the cyclic shear strain history, especially that after liquefaction, and the more the accumulated shear strain ratio is, the more the re-sedimentation volumetric is. Besides, the re-consolidation behavior is significantly affected by the previous consolidation history and cyclic stress history, and the post-liquefaction reconsolidation will follow the trend of the previous normal consolidation curve, and the compression index is larger than that of the normal consolidation curve under the same conditions. A post-liquefaction volumetric strain model accounting for both the consolidation and cyclic shear strain histories is proposed, which treats the re-sedimentation as part of the re-consolidation by introducing the concept of assumed initial stress, and the estimation methods for re-compression index and the assumed initial stress are recommended accordingly. Then dynamic centrifuge model tests are performed, and the consolidation settlement and liquefaction responses are monitored, whereupon the mechanisms of liquefaction-induced volumetric strain are observed at the model scale, and the proposed model for post-liquefaction settlement estimation is preliminarily validated.
  • [1] ZHOU Y G, CHEN Y M, LING D S. Shear wave velocity-based liquefaction evaluation in the great Wenchuan Earthquake: a preliminary case study[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 231-239.
    [2] 袁晓铭, 曹振中. 砂砾土液化判别的基本方法及计算公式[J]. 岩土工程学报. 2011, 33(4): 509-519. (YUAN Xiao-ming, CAO Zhen-zhong. Fundamental method and formula for evaluation of liquefaction of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
    [3] 孙 锐, 唐福辉, 袁晓铭. 频率下降率法对2011年新西兰6.3级地震液化的盲测[J]. 岩土力学, 2011, 32(增刊2): 383-388. (SUN Rui, TANG Fu-hui, YUAN Xiao-ming. Blind detection of liquefaction sites by the method of frequency decrease rate for New Zealand Earthquake[J]. Rock and Soil Mechanics, 2011, 32(S2): 383-388. (in Chinese))
    [4] BHATTACHARYA S, HYODO M, GODA K, et al. Liquefaction of soil in the Tokyo Bay Area from the 2011 Tohoku (Japan) Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1618-1628.
    [5] COX B R, BOULANGER R W, TOKIMATSU K, et al. Liquefaction at strong motion stations and in Urayasu City during the 2011 Tohoku-Oki Earthquake[J]. Earthquake Spectra, 2013, 29(S1): 55-80.
    [6] 王志华, 周恩全, 徐 超. 土体液化大变形研究进展与讨论[J]. 南京工业大学学报(自然科学版), 2012, 34(5): 143-148. (WANG Zhi-hua, ZHOU En-quan, XU Chao. Advance and discussion on liquefaction-induced large deformation of soil[J]. Journal of Nanjing University of Technology (Natural Science), 2012, 34(5): 143-148. (in Chinese))
    [7] 高玉峰, 刘汉龙, 朱 伟. 地震液化引起的地面大位移研究进展[J]. 岩土力学, 2000, 21(3): 294-298. (GAO Yu-feng, LIU Han-long, ZHU Wei. Advances in large ground displacement induced by seismic liquefaction[J]. Rock and Soil Mechanics, 2000, 21(3): 294-298. (in Chinese))
    [8] ISHIHARA K, YOSHIMINE M. Evaluation of settlements in sand deposits following liquefaction during earthquakes[J]. Soils and Foundations, 1992, 32(1): 173-188.
    [9] 叶 斌, 叶冠林, 长屋淳一. 砂土地基地震液化沉降的两种简易计算方法的对比分析[J]. 岩土工程学报, 2010, 32(增刊2): 33-36. (YE Bin, YE Guan-lin, NAGAYA Junichi. Comparison of two simple methods for assessing subsidence of sandy ground caused by liquefaction in earthquake[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 33-36. (in Chinese))
    [10] 张建民, 王 刚. 砂土液化后大变形的机理[J]. 岩土工程学报, 2006, 28(7): 835-840. (ZHANG Jian-min, WANG Gang. Mechanism of large post-liquefaction deformation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 835-840. (in Chinese))
    [11] SHAMOTO Y, ZHANG J M. Evaluation of seismic settlement potential of saturated sandy ground based on concept of relative compression[J]. Soils and Foundations, 1998, 38(S2): 57-68.
    [12] 刘汉龙, 周云东, 高玉峰. 砂土地震液化后大变形特性试验研究[J]. 岩土工程学报, 2002, 24(2): 142-146. (LIU Han-long, ZHOU Yun-dong, GAO Yu-feng. Study on the behavior of large ground displacement of sand due to seismic liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 142-146. (in Chinese))
    [13] 庄海洋, 陈国兴. 砂土液化大变形本构模型及在ABAQUS软件上的实现[J]. 世界地震工程, 2011, 27(2): 45-50. (ZHUANG Hai-yang, CHEN Guo-xing. Constitutive model for large liquefaction deformation of sand and its implementation in ABAQUS software[J]. Word Earthquake Engineering, 2011, 27(2): 45-50. (in Chinese))
    [14] ISHIHARA K, ARAKI K, BRADLEY B A. Characteristics of liquefaction induced damage in the 2011 great east Japan Earthquake[C]// International Conference on Geotechnics for Sustainable Development. Hanoi, 2011: 1-22.
    [15] UENG T S, WU C W, CHENG H W, et al. Settlements of saturated clean sand deposits in shaking table tests[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(1/2): 50-60.
    [16] HIGUCHI S, EJIRI J. Influence of the earthquake motion characteristics on the ground settlement behavior due to liquefaction[C]// Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake. Tokyo, 2012: 789-800.
    [17] ADALIER K, ELGAMAL A. Liquefaction of over-consolidated sand: a centrifuge investigation[J]. Journal of Earthquake Engineering, 2005, 9(S1): 127-150.
    [18] DASHTI S, BRAY J D, PESTANA J M, et al. Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(1): 151-164.
    [19] SENTO N, KAZAMA M, UZUOKA R, et al. Liquefaction-induced volumetric change during re- consolidation of sandy soil subjected to undrained cyclic loading histories[C]// Proceedings of the International Conference on Cyclic Behaviour of Soils and Liquefaction Phenomena. Bochum, 2004: 199-206.
    [20] 汪闻韶. 剪切波速在评估地基饱和砂层地震液化可能性中的应用[J]. 岩土工程学报,2001, 23(6): 655-658. (WANG Wen-shao. Utilization of shear wave velocity in assessment of liquefaction potential of saturated sand under level ground during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 655-658. (in Chinese))
    [21] 黄 博, 丁 浩, 陈云敏. 高速列车荷载作用的动三轴试验模拟[J]. 岩土工程学报, 2011, 33(2): 195-202. (HUANG Bo, DING Hao, CHEN Yun-min. Simulation of high-speed train load by dynamic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 195-202. (in Chinese))
    [22] PESTANA J M, WHITTLE A J. Compression model for cohesionless soils[J]. Géotechnique, 1995, 45(4): 611-631.
    [23] 赵颜辉, 朱俊高, 张宗亮, 等. 无黏性土压缩曲线的一种数学模式[J]. 岩土力学, 2011, 32(10): 3033-3037. (ZHAO Yan-hui, ZHU Jun-gao, ZHANG Zong-liang, et al. A compression model for cohesionless soils[J]. Rock and Soil Mechanics, 2011, 32(10): 3033-3037. (in Chinese))
    [24] 姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型[J]. 岩土工程学报, 2011, 33(12): 1827-1832. (YAO Yang-ping, YU Ya-ni. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832. (in Chinese))
    [25] 周燕国, 梁 甜, 李永刚, 等. 含黏粒砂土场地液化离心机振动台试验研究[J]. 岩土工程学报, 2013, 35(9): 1650-1658. (ZHOU Yan-guo, LIANG Tian, LI Yong-gang, et al. Dynamic centrifuge test of liquefaction of clayey sand ground[J], Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1650-1658. (in Chinese))
    [26] ISHIKAWA A, SHAMOTO Y, MANO H, et al. Effect of liquefaction duration on progressive failure of sandy ground under 2-D biased load of structure[C]// The 8th International Conference on Physical Modelling in Geotechnics. Perth, 2014: 1079-1085.
    [27] MALVICK E, KUTTER B, BOULANGER R, et al. Shear localization due to liquefaction-induced void redistribution in a layered infinite slope[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2006, 132(10): 1293-1303.
  • 期刊类型引用(17)

    1. 任连伟,王书彪,孔纲强,杨权威,邓岳保. 综合管廊始发井能源支护桩热力响应现场试验. 岩土力学. 2025(02): 573-581+612 . 百度学术
    2. 吴行州. 基坑围护桩作用下地层支护应力分析及应用. 城市轨道交通研究. 2024(03): 125-129+134 . 百度学术
    3. 赵鹏,张东海,李晓昭,张古彬,寇亚飞,高蓬辉. 基于p阶线性模型的地埋管换热器流体温度分布研究. 太阳能学报. 2024(06): 51-59 . 百度学术
    4. 马奇杰,周超. 非对称循环温度荷载下2×2能源群桩倾斜性状离心机试验研究. 岩土工程学报. 2024(10): 2158-2165 . 本站查看
    5. 唐丽云,邵海涛,唐华明,邱培勇,杜晓奇,张蕾,彭惠. 寒区道路桥梁融雪除冰技术研究综述. 中外公路. 2024(05): 25-38 . 百度学术
    6. 谢金利,覃英宏,李颖鹏,蒙相霖,谭康豪,张星月. 能源桩传热特性与热-力响应研究综述. 土木与环境工程学报(中英文). 2023(01): 155-166 . 百度学术
    7. 刘春阳,方鹏飞,张日红,谢新宇,娄扬,张秋善,朱大勇. 考虑间歇比的地热能源桩热-力性能试验研究. 浙江大学学报(工学版). 2023(03): 562-572 . 百度学术
    8. 周杨,孔纲强,李俊杰. 夏季工况下扩底能量桩单桩热力学响应分析. 中国公路学报. 2023(05): 65-74 . 百度学术
    9. 韩志攀,贾新聪,王晓超,牛彦平. 建筑墙体碳排放优化及减碳分析. 建筑结构. 2023(S1): 2356-2360 . 百度学术
    10. 陈玉,孔纲强,孟永东,王乐华,刘红程. 间歇与持续加热下含承台能量桩基础现场试验. 深圳大学学报(理工版). 2022(01): 75-84 . 百度学术
    11. 陈树森,赵蕾. 能源群桩与单桩热-力学响应特性对比分析. 地下空间与工程学报. 2022(03): 788-800 . 百度学术
    12. 吕成钊. 四种保温墙体的动态热响应特性测试. 建筑节能(中英文). 2022(08): 48-51 . 百度学术
    13. 任连伟,韩志攀,霍继炜,高宇甲. 桩顶约束下桥梁大直径能量桩热力响应现场试验. 防灾减灾工程学报. 2022(05): 937-944+960 . 百度学术
    14. 陈鑫,孔纲强,刘汉龙,江强,杨挺. 桥面融雪除冰能量桩热泵系统换热效率现场试验. 中国公路学报. 2022(11): 107-115 . 百度学术
    15. 张精兵,杨军兵,肖勇,海迪,陈智. 深层埋管式能源支护桩埋管形式与换热特性研究. 建筑结构. 2022(S2): 2515-2522 . 百度学术
    16. 任连伟,任军洋,孔纲强,刘汉龙. 冷热循环下PHC能量桩热力响应和承载性能现场试验. 岩土力学. 2021(02): 529-536+546 . 百度学术
    17. 孟甲. 钢管桩单桩涂料防腐施工质量管控方式探讨. 珠江水运. 2021(05): 59-60 . 百度学术

    其他类型引用(17)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 34
出版历程
  • 收稿日期:  2014-12-17
  • 发布日期:  2014-10-19

目录

    /

    返回文章
    返回