• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深海能源土剪切带形成机理离散元分析

蒋明镜, 彭镝, 申志福, 张望城, 朱方园

蒋明镜, 彭镝, 申志福, 张望城, 朱方园. 深海能源土剪切带形成机理离散元分析[J]. 岩土工程学报, 2014, 36(9): 1624-1630. DOI: 10.11779/CJGE201409008
引用本文: 蒋明镜, 彭镝, 申志福, 张望城, 朱方园. 深海能源土剪切带形成机理离散元分析[J]. 岩土工程学报, 2014, 36(9): 1624-1630. DOI: 10.11779/CJGE201409008
JIANG Ming-jing, PENG Di, SHEN Zhi-fu, ZHANG Wang-cheng, ZHU Fang-yuan. DEM analysis on formation of shear band of methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1624-1630. DOI: 10.11779/CJGE201409008
Citation: JIANG Ming-jing, PENG Di, SHEN Zhi-fu, ZHANG Wang-cheng, ZHU Fang-yuan. DEM analysis on formation of shear band of methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1624-1630. DOI: 10.11779/CJGE201409008

深海能源土剪切带形成机理离散元分析  English Version

基金项目: 国家自然科学基金国家杰出青年科学基金项目(51025932)
详细信息
    作者简介:

    蒋明镜(1965- ),男,教授,博士生导师,国家杰出青年基金获得者,主要从事天然结构性黏土、砂土、非饱和土、太空土和深海能源土宏观微观试验、本构模型和数值分析研究。E-mail: mingjing.jiang@tongji.edu.cn。

  • 中图分类号: TU43;P744

DEM analysis on formation of shear band of methane hydrate bearing soils

  • 摘要: 天然气水合物的分解开采过程将会劣化深海能源土的力学性能,从而引发一系列岩土工程问题。因此,要实现天然气水合物的安全开采,需要对能源土的强度和变形特性开展研究。结合深海能源土微观胶结模型,通过平面应变双轴试验的离散元模拟,研究了深海能源土剪切带形成机理以及剪切带内外的宏微观变量特征。结果表明:水合物胶结提升了深海能源土的强度,且使其呈现出明显的应变软化特性;剪切带在峰值应力后开始产生,伴随着胶结的大量破坏以及各宏微观变量的局部化;剪切带内外各宏微观变量差异明显,随着轴向应变的增加,土体微观结构也随之发生变化。
    Abstract: Methane hydrate (MH) decomposition and mining will worsen the mechanical behavior of methane hydrate bearing soil (MHBS) and cause a series of geotechnical problems. Therefore, in order to facilitate safe exploitation of MH, it is crucial to understand the strength and deformation characteristics of MHBS. Based on the bond model of MHBS, the distinct element method (DEM) is used in planar biaxial compression tests to analyze the formation of shear band as well as some micro and macro variables of MHBS within and outside the shear band. The results show that methane hydrate increases the strength of MHBS and leads to strain-softening behavior; the shear band is fully developed after the peak stress, accompanied by massive bond breakage and localization of other micro variables; the micro and macro variables within and outside the shear band differ. Besides, with the increase of axial strain, the micro structure of MHBS changes.
  • [1] 肖 俞, 蒋明镜, 孙渝刚. 考虑简化胶结模型的深海能源土宏观力学性质离散元数值模拟分析[J]. 岩土力学, 2011, 21(增刊1): 755-760. (XIAO Yu, JIANG Ming-jing, SUN Yu-gang. Numerical simulation of macromechanical properties of deep-sea energy soil by discrete element method under simplified bond model[J]. Rock and Soil Mechanics, 2011, 21(S1): 755-760. (in Chinese))
    [2] DILLON W P, DANFORTH W W, HUTCHINSON D R, et al. Evidence for long-term instability in Storegga region off western Norway[J]. Marine Geology, 1996, 13: 281-292.
    [3] PETERS D, HATTON G. Gas hydrate geohazards in shallow sediments and their impact on the design of subsea systems[C]// Proceedings of 6th International Conference on Gas Hydrate. Vancouver. British Columbia, 2008.
    [4] KATAOKA S, YAMASHITA S, SUZUKI T. Soils properties of the shallow type methane hydrate-bearing sediments in the Lake Baikal[C]// The 17th International Conference on Soil Mechanics and Geotechnical Engineering. Egypt, 2009: 299-302.
    [5] MASUI A, HANEDA H, OGATA Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]// Proceedings of the 15th International Offshore and Polar Engineering Conference. Seoul, 2005: 364-369.
    [6] HYODO M, NAKATA Y, YOSHIMOTO N, et al. Mechanical behavior of methane hydrate-supported sand [C]// International Symposium on Geotechnical Engineering Ground Improvement and Geosynthetics for Human Security and Environmental Preservation. Thailand, 2007: 195-208.
    [7] ZHANG X H, LU X B, ZHANG L M, et al. Experimental study on mechanical properties of methane-hydrate-bearing sediments[J]. Acta Mechanica Sinica, 2012, 28(5): 1356-1366.
    [8] YU Y, CHENG Y P, SOGA K. Mechanical behaviour of methane hydrate soil sediments using discrete element method: pore-filling hydrate distribution[M]// WU C Y. Discrete Element Modelling of Particulate Media. London: RSC Publishing, 2012: 264-270.
    [9] YAN R, WEI C, WEI H, et al. A generalized critical state model for gas hydrate-bearing sediments[M]// YANG Q, ZHANG J M, ZHENG H, et al. Constitutive Modeling of Geomaterials. Springer: Berlin Heidelberg, 2013: 649-656.
    [10] BORJA R I, SONG X, RECHENMACHER A L, et al. Shear band in sand with spatially varying density[J]. Journal of the Mechanics and Physics of Solids, 2012, 61(1): 219-234.
    [11] JIANG M, ZHU H, LI X. Strain localization analyses of idealized sands in biaxial tests by distinct element method[J]. Frontiers of Architecture and Civil Engineering in China, 2010, 4(2): 208-222.
    [12] JIANG M, ZHANG W, SUN Y, et al. An investigation on loose cemented granular materials via DEM analyses[J]. Granular Matter, 2013, 15(1): 65-84.
    [13] HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
    [14] JIANG M, CHEN H, TAPIAS M, et al. Study of mechanical behavior and strain localization of methane hydrate bearing sediments with different saturations by a new DEM model[J]. Computers and Geotechnics, 2014, 57: 122-138.
    [15] JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357.
    [16] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and geotechnics, 2003, 30(7): 579-597.
    [17] JIANG M J, YAN H B, ZHU H H, et al. Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses[J]. Computers and Geotechnics, 2011, 38(1): 14-29.
  • 期刊类型引用(9)

    1. 陈梦豪,付海,曹珊珊,林铭宇,陈良宇. 温度对MX-80膨润土物理性能的影响. 金陵科技学院学报. 2024(01): 46-53 . 百度学术
    2. 李裕诚,陈永贵,刘丽,叶为民,王琼. 高压实膨润土多尺度膨胀力特性研究进展. 岩土工程学报. 2024(11): 2457-2464 . 本站查看
    3. 薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 . 百度学术
    4. 项国圣,卞云飞,付文青,周殷康. 热-碱作用对压实膨润土抗剪性能的影响. 安徽建筑大学学报. 2024(06): 8-14 . 百度学术
    5. 李彩霞,李俊,徐猛,刘敏,刘桂祺. 氯盐溶液对钠基膨润土垫层膨胀性能的影响. 土木与环境工程学报(中英文). 2023(01): 97-104 . 百度学术
    6. 王琼,张佳南,高岑,苏薇,刘樟荣,叶为民. 基于梯度提升决策树算法的膨润土膨胀力预测. 世界核地质科学. 2023(03): 775-786 . 百度学术
    7. 曾召田,张瀚彬,邵捷昇,车东泽,吕海波,梁珍. MX-80膨润土高温老化时间效应的细微观分析. 岩土力学. 2023(S1): 145-153 . 百度学术
    8. 胡志杰,项国圣,付文青,王浩,李华健. 荷载-溶液作用下膨润土压缩渗透性能研究. 地下空间与工程学报. 2023(06): 1851-1858 . 百度学术
    9. 项国圣,胡志杰,葛磊,王浩. 含盐水溶液作用下膨润土膨胀性能衰减机理. 华北水利水电大学学报(自然科学版). 2022(05): 85-91 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  423
  • HTML全文浏览量:  2
  • PDF下载量:  384
  • 被引次数: 15
出版历程
  • 收稿日期:  2014-02-11
  • 发布日期:  2014-09-21

目录

    /

    返回文章
    返回