• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

混凝土面板坝面板动力损伤有限元分析

孔宪京, 徐斌, 邹德高, 单其宽, 胡志强

孔宪京, 徐斌, 邹德高, 单其宽, 胡志强. 混凝土面板坝面板动力损伤有限元分析[J]. 岩土工程学报, 2014, 36(9): 1594-1600. DOI: 10.11779/CJGE201409004
引用本文: 孔宪京, 徐斌, 邹德高, 单其宽, 胡志强. 混凝土面板坝面板动力损伤有限元分析[J]. 岩土工程学报, 2014, 36(9): 1594-1600. DOI: 10.11779/CJGE201409004
KONG Xian-jing, XU Bin, ZOU De-gao, SHAN Qi-kuan, HU Zhi-qiang. Finite element dynamic analysis for seismic damage of slabs of concrete faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1594-1600. DOI: 10.11779/CJGE201409004
Citation: KONG Xian-jing, XU Bin, ZOU De-gao, SHAN Qi-kuan, HU Zhi-qiang. Finite element dynamic analysis for seismic damage of slabs of concrete faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1594-1600. DOI: 10.11779/CJGE201409004

混凝土面板坝面板动力损伤有限元分析  English Version

基金项目: 地震行业科研专项经费项目(201208013); 国家自然科学基金重大研究计划集成项目(91215301); 国家自然科学基金项目(51379028; 51279025); 新世纪优秀人才支持计划资助项目(NCET-12-0083)
详细信息
    作者简介:

    孔宪京(1952- ),男,江苏南京人,博士,教授,博士生导师,主要从事高土石坝抗震和岩土地震工程研究。E-mail: kongxj@dlut.edu.cn。

    通讯作者:

    徐斌

  • 中图分类号: TU435;TV641.43

Finite element dynamic analysis for seismic damage of slabs of concrete faced rockfill dams

  • 摘要: 联合采用混凝土塑性损伤模型和堆石料弹塑性本构模型,建立了面板堆石坝弹塑性动力分析方法,研究了地震荷载作用下混凝土面板的损伤发生和发展过程。计算结果表明:地震时,在0.65HH为坝高)附近顺坡向拉应力最大,面板首先在该部位出现损伤,同时由于鞭稍效应,0.85H面板附近也出现损伤;采用损伤模型,损伤部位的面板出现软化,应力得到释放,计算结果比线弹性模型更加合理;采用塑性损伤模型可以反映混凝土面板渐进破坏过程,通过损伤变量可以清晰地了解面板的损伤分布和薄弱环节。此研究成果可以为进一步开展混凝土面板堆石坝极限抗震能力及抗震措施分析提供有效手段。
    Abstract: A 3D elastic-plastic dynamic analysis procedure platform for concrete faced rockfill dams (CFRD) is developed by combining the elastic-plastic model for rock-fill materials with the plastic damage model for concrete. The damage occurrence and development process of concrete slabs under earthquake load are investigated using the procedure. The results show that the maximum slope-direction tensile stress of the slabs occurs at the height of 0.65 of the dam and results in the tensile damage of the slabs at this position during earthquakes. Also, the tensile damage of the slabs occurs at the height of 0.85 of the dam because of the “whiplash effect”. The plastic damage model for concrete can reflect the damage process of the slab precisely. The damage variable can be used to analyze of the damage distribution and weakness position of the slabs. The research results may provide an effective method for the studies on the limit aseismic capacity and the aseismic design of CFRDs.
  • [1] 陈生水, 霍家平, 章为民. 汶川“5.12”地震对紫坪铺混凝土面板堆石坝的影响及原因分析[J]. 岩土工程学报, 2008, 30(6): 795-801. (CHEN Sheng-shui, HUO Jia-ping, ZHANG Wei-min. Analysis of effects of “5.12” Wenchuan earthquake on Zipingpu concrete face rock-fill dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 795-801. (in Chinese))
    [2] HILLERBORG A, MODEER M, PETERSSON P E. Analysis of crack formation and crack rowth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976(6): 733-782.
    [3] BAZANT Z P, OH B H. Crack band theory for fracture of concrete[J]. Materiaux Constructions, 1983(16): 155-177.
    [4] LUBLINER J, OLIVEE J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
    [5] LEE J, FENVES L G. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(3): 892-900.
    [6] LEE J, FENVES L G. A plastic-damage concrete model for earthquake analysis of dams[J]. Earthquake Engineering & Structural Dynamics, 1998, 27(9): 937-956.
    [7] 孔宪京, 邹德高, 徐 斌, 等. 紫坪埔面板堆石坝三维有限元弹塑性分析[J]. 水力发电学报, 2013, 32(2): 213-222. (KONG Xian-jing, ZOU De-gao, XU Bin, et al. Three dimension finite element elasto-plastic analysis of Zipingpu concrete-faced rockfill dam[J]. Journal of Hydroelectric Engineering, 2013, 32(2): 213-222. (in Chinese))
    [8] XU Bin, ZOU De-gao, LIU Hua-bei. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43: 143-154.
    [9] ZOU De-gao, XU Bin, KONG Xian-jing, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity mode[J]. Computers and Geotechnicas, 2013, 49: 111-122.
    [10] OLIVER J. A consistent characteristic length for smeared cracking models[J]. International Journal for Numerical Methods in Engineering, 1989, 28(2): 461-474.
    [11] GOPALARATNAM V S, SHAH S P. Softening response of plain concrete in direct tension[J]. ACI Journal Proceedings, 1985, 82(3): 310-323.
    [12] KARSAN I D, JIRSA J O. Behavior of concrete under compressive loading[J]. Journal of the Structural Division, 1969, 95(12): 2535-2563.
    [13] PASTOR M, ZIENKIEWICZ O C, CHAN A H C. Generalized plasticity and the modeling of soil behavior[J]. Int J Numer Analyt Meth Geomech, 1990, 14(3): 151-190.
    [14] ZIENKIEWICZ O C, LEUNG K H, PASTOR M. Simple model for transient soil loading in earthquake analysis I: basic model and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(5): 453-476.
    [15] PASTOR M, ZIENKIEWICZ O C, LEUNG K H. Simple model for transient soil loading in earthquake analysis II: non-associative models for sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(5): 477-498.
    [16] 唐欣薇, 周元德, 张楚汉. 基于细观力学模型的混凝土坝抗震分析[J]. 水力发电学报, 2013, 32(2): 195-200. (TANG Xin-wei, ZHOU Yuan-de, ZHANG Chu-han. Concrete dam seismic analysis based on mesoscale damage mechanics[J]. Journal of Hydroelectric Engineering, 2013, 32(2): 195-200. (in Chinese))
  • 期刊类型引用(9)

    1. 陈梦豪,付海,曹珊珊,林铭宇,陈良宇. 温度对MX-80膨润土物理性能的影响. 金陵科技学院学报. 2024(01): 46-53 . 百度学术
    2. 李裕诚,陈永贵,刘丽,叶为民,王琼. 高压实膨润土多尺度膨胀力特性研究进展. 岩土工程学报. 2024(11): 2457-2464 . 本站查看
    3. 薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 . 百度学术
    4. 项国圣,卞云飞,付文青,周殷康. 热-碱作用对压实膨润土抗剪性能的影响. 安徽建筑大学学报. 2024(06): 8-14 . 百度学术
    5. 李彩霞,李俊,徐猛,刘敏,刘桂祺. 氯盐溶液对钠基膨润土垫层膨胀性能的影响. 土木与环境工程学报(中英文). 2023(01): 97-104 . 百度学术
    6. 王琼,张佳南,高岑,苏薇,刘樟荣,叶为民. 基于梯度提升决策树算法的膨润土膨胀力预测. 世界核地质科学. 2023(03): 775-786 . 百度学术
    7. 曾召田,张瀚彬,邵捷昇,车东泽,吕海波,梁珍. MX-80膨润土高温老化时间效应的细微观分析. 岩土力学. 2023(S1): 145-153 . 百度学术
    8. 胡志杰,项国圣,付文青,王浩,李华健. 荷载-溶液作用下膨润土压缩渗透性能研究. 地下空间与工程学报. 2023(06): 1851-1858 . 百度学术
    9. 项国圣,胡志杰,葛磊,王浩. 含盐水溶液作用下膨润土膨胀性能衰减机理. 华北水利水电大学学报(自然科学版). 2022(05): 85-91 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  334
  • HTML全文浏览量:  2
  • PDF下载量:  323
  • 被引次数: 15
出版历程
  • 收稿日期:  2014-01-05
  • 发布日期:  2014-09-21

目录

    /

    返回文章
    返回