• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深部巷道底板岩体渗透性高压压水试验研究

黄震, 姜振泉, 孙强, 曹丁涛, 王言剑, 张冬

黄震, 姜振泉, 孙强, 曹丁涛, 王言剑, 张冬. 深部巷道底板岩体渗透性高压压水试验研究[J]. 岩土工程学报, 2014, 36(8): 1535-1543. DOI: 10.11779/CJGE201408021
引用本文: 黄震, 姜振泉, 孙强, 曹丁涛, 王言剑, 张冬. 深部巷道底板岩体渗透性高压压水试验研究[J]. 岩土工程学报, 2014, 36(8): 1535-1543. DOI: 10.11779/CJGE201408021
HUANG Zhen, JIANG Zhen-quan, SUN Qiang, CAO Ding-tao, WANG Yan-jian, ZHANG Dong. High-pressure water injection tests on permeability of deep rock mass under tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1535-1543. DOI: 10.11779/CJGE201408021
Citation: HUANG Zhen, JIANG Zhen-quan, SUN Qiang, CAO Ding-tao, WANG Yan-jian, ZHANG Dong. High-pressure water injection tests on permeability of deep rock mass under tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1535-1543. DOI: 10.11779/CJGE201408021

深部巷道底板岩体渗透性高压压水试验研究  English Version

基金项目: 国家重点基础研究发展计划(973计划)(2013CB036003)
详细信息
    作者简介:

    黄 震(1989- ),男,江西大余人,博士研究生,主要从事岩土工程和水文地质工程地质方面的研究。E-mail: huangzhen075@163.com。

  • 中图分类号: TU452

High-pressure water injection tests on permeability of deep rock mass under tunnels

  • 摘要: 岩体渗透性是反映岩体水力学特征的重要参数,为探究深部岩体的渗透性,采用钻孔高压压水试验手段,对东滩煤矿深部巷道底板四段岩体进行了现场原位压水试验,获得了大量实测数据。试验和数据分析结果表明:岩体在压水过程中经历了“隔水-导渗-稳渗”的过程,随着压水的进行,岩体的渗透性不断增强。东滩煤矿深部底板的厚层泥岩具有低阻弱渗的特点,厚层砂岩和互层具有高阻弱渗的特点,四段岩体原始状态下渗透性均较差。注水压力与流量关系曲线具有很好的指数关系,除厚层砂岩外,厚层泥岩和互层的注水压力-流量关系具有明显的分段性。岩体等效裂隙宽度随着注水压力的增大具有较好的指数关系且具有明显的分段性,即可分为突变点前的稳定阶段和突变点后的突增阶段。可通过裂隙宽度变化量是否大于0来判断岩体内是否发生明显渗流。研究结果有助于加强对深部岩体在水压作用渗透性变化的认识,为深部煤层的安全开采提供重要的参考依据。
    Abstract: The permeability is a very important factor to determine the hydraulic characteristics of rock mass. To study the permeability of deep rock mass, high-pressure borehole water injection tests are carried out to analyze the four segments of rock masses in Dongtan Coal Mine, and numerous data are obtained. The test results and analyses of data show that the rock mass goes through the process of “water resistance-seepage guiding-stable seepage”. The permeability of rock mass increases with the test process. The thick mudstone under the tunnel of Dongtan Coal Mine exhibits the behavior of low water anti-pressure and permeability, while the thick sandstone and other two rock masses show that of high water anti-pressure and low permeability. The four test rock masses are of low permeability. The regression results indicate the exponential relationship between injection pressure and flow rate with high regression coefficients. The curves of injection pressure and flow rate of thick mudstone and interbed exhibit significant segmentation expect those of thick sandstone. The relationship between injection pressure and equivalent fracture width shows obvious exponential relationship as well, and two significant segmentations appear, that is, stability before mutation and sudden increase after mutation. Whether seepage in the rock mass happens or not can be judged by the relation between and 0. The conclusions will help further understand the permeability of deep rock masses under high water pressure and may make an important reference for safety mining of deep coal mines.
  • [1] ZHANG J C. Investigations of water inrushs from aquifers under coal seam[J]. International Journal of Rock Mechanics and Mining Science, 2005, 42(2): 350-360.
    [2] 葛颜慧, 李术才, 张庆松. 高风险岩溶隧道突水预警防灾体系研究[J]. 山东大学学报(工学版), 2009, 39(3): 122-128. (GE Yan-hui, LI Shu-cai, ZHANG Qing-song. Study on early warning and disaster prevention system of water inrush into high risk karst tunnels[J]. Journal of Shandong University (Engineering Science), 2009, 39(3): 122-128. (in Chinese))
    [3] 张民庆, 曾强运, 杨 兵. 岩溶隧道溶洞泄水机理及工程实例分析[J]. 岩土工程学报, 2010, 32(10): 1543-1550. (ZHANG Min-qing, ZENG Qiang-yun, YANG Bing. Water release mechanism of caverns of karst tunnels and case studies[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1543-1550. (in Chinese))
    [4] 许振浩, 李术才, 李利平, 等. 一种典型的岩溶隧道衬砌压裂突水灾害成因与防治[J]. 岩石力学与工程学报, 2011, 30(7): 1396-1404. (XU Zhen-hao, LI Shu-cai, LI Li-ping, et al. Cause, disaster prevention and controlling of a typical kind of water inrush and lining fracturing in karst tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7): 1396-1404. (in Chinese))
    [5] 乔 伟, 李文平, 孙如华, 等. 煤矿特大动力突水动力冲破带形成机理研究[J]. 岩土工程学报, 2011, 33(11): 1726-1733. (QIAO Wei, LI Wen-ping, SUN Ru-hua, et al. Formation mechanism of dynamic impact failure zone of super dynamic water inrush in coal mine[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1726-1733. (in Chinese))
    [6] 刘 斌, 聂利超, 李术才, 等. 隧道突水灾害电阻率层析成像法实时监测数值模拟与试验研究[J]. 岩土工程学报, 2012, 34(11): 2026-2035. (LIU Bin, NIE Li-chao, LI Shu-cai, et al. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035. (in Chinese))
    [7] 倪绍虎, 何世海, 汪小刚, 等. 裂隙岩体水力学特征研究[J]. 岩石力学与工程学报, 2012, 31(3): 488-498. (NI Shao-hu, HE Shi-hai, WANG Xiao-gang, et al. Hydraulic properties of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 488-498. (in Chinese))
    [8] 李利平, 李术才, 李树忱, 等. 松散承压含水层下采煤的流固耦合模型试验与数值分析研究[J]. 岩土工程学报, 2013, 35(4): 679-690. (LI Li-ping, LI Shu-cai, LI Shu-chen, et al. Numerical analysis and fluid-solid coupling model tests of coal mining under losse confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 679-690. (in Chinese))
    [9] 徐智敏, 孙亚军, 巩思园, 等. 高承压水上采煤底板突水通道形成的监测与数值模拟[J]. 岩石力学与工程学报, 2012, 31(8): 1698-1704. (XU Zhi-min, SUN Ya-jun, GONG Si-yuan, et al. Monitoring and mumerical simulation of formation of water inrush pathway caused by coal ming above confined water with high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1698-170. (in Chinese))
    [10] 姜振泉, 季梁军, 左如松, 等. 岩石在伺服条件下的渗透性与应变、应力的关联性特征[J]. 岩石力学与工程学报, 2002, 21(10): 1442-1446. (JIANG Zhen-quan, JI Liang-jun, ZUO Ru-song, et al. Correlativity among rock permeability and strain, stress under servo-control condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10): 1442-1446. (in Chinese))
    [11] 左如松, 朱岩华, 姜振泉. 岩石临界抗渗强度的测定及其在工程中的应用[J]. 煤田地质与勘探, 2002, 30(6): 38-40. (ZUO Ru-song, ZHU Yan-hua, JIANG Zhen-quan. The acquisition of critical anti-permeability strength of rock and its application in engineering[J]. Coal Geology and Exploration, 2002, 30(6): 38-40. (in Chinese))
    [12] 黄 伟, 陈占清, 靳向红, 等. 圆板状岩样破坏过程中的渗透特性试验研究[J]. 实验力学, 2010, 25(4): 420-424. (HUANG Wei, CHEN Zhan-qing, JIN Xiang-hong, et al. Experimental research on permeability of round slice rock specimen in its failure process[J]. Journal of Experimental Mechanics, 2010, 25(4): 420-424. (in Chinese))
    [13] ZHANG R, JIANG Z Q, SUN Q, et al. The relationship between the deformation mechanism and permeability on brittle rock[J]. Nat Hazards, 2013, 66: 1179-1187.
    [14] 盛金昌, 许孝臣, 姚德生, 等. 流固化学耦合作用下裂隙岩体渗透特性研究进展[J]. 岩土工程学报, 2011, 33(7): 996-1006. (SHENG Jin-chang, XU Xiao-chen, YAO De-sheng, et al. Advances in permeability evolution infractured rocks during hydro-mechanical-chemical processses[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 996-1006. (in Chinese))
    [15] 杨建平, 陈卫忠, 吴月秀, 等. 裂隙岩体等效渗透系数张量数值法研究[J]. 岩土工程学报, 2013, 35(6): 1183-1188. (YANG Jian-ping, CHEN Wei-zhong, WU Yue-xiu, et al. Numerical study on equivalent permeability tensor of fractured rock masses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1183-1188. (in Chinese))
    [16] 吴基文, 樊 成. 煤层底板岩体阻水能力原位测试研究[J]. 岩土工程学报, 2003, 25(1): 67-70. (WU Ji-wen, FAN Cheng. Study on in-situ measurement of water-resisting ability of coal seam floor rock mass[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 67-70. (in Chinese))
    [17] HAMM S Y, KIM M, CHENG J Y, et al. Relationship between hydraulic conductivity and fracture properties estimated from packer test and borehole data in a fracture granite[J]. Engineering Geology, 2007, 92: 73-87.
    [18] MUKAI A, FUJIMORI K. Secular change of permeability in the fracture zone near the Nojima fault estimated using strain strain changes due to water injection experiments[J]. Tectonophysics, 2007, 443: 193-199.
    [19] BARBARA A, TOMAS M, JESUS AU, et al. Hydraulic conductivity characterization of a karst recharge area using water injection test and electrical resistivity logging[J]. Engineering Geology, 2010, 117: 90-96.
    [20] 张世殊. 溪洛渡水电站坝基岩体钻孔常规压水与高压压水试验成果比较[J]. 岩石力学与工程学报, 2002, 21(3): 385-387. (ZHANG Shi-shu. Comparison of results of conventional and high pressure water-pressure tests on the dam foundation rock massed of Xiluodu Hydroelectric Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(3): 385-387. (in Chinese))
    [21] 魏 宁, 李金都, 傅旭东. 钻孔高压压水试验的数值模拟[J]. 岩石力学与工程学报, 2005, 25(5): 1037-1042. (WEI Ning, LI Jin-du, FU Xu-dong. Numerical simulation of high-pressure injection experiment[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 25(5): 1037-1042. (in Chinese))
    [22] 蒋中明, 傅 胜, 李尚高, 等. 高压引水隧道陡倾角断层岩体高压压水试验研究[J]. 岩石力学与工程学报, 2007, 26(11): 2318-2323. (JIANG Zhong-ming, FU Sheng, LI Shang-gao, et al. High pressure permeability test on hydtaulic tunnel with steep obliquity faults under high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2318-2323. (in Chinese))
    [23] 张蔚榛. 地下水与土壤水动力学[M]. 北京: 中国水利水电出版社, 1996. (ZHANG Yu-zhen. Dynamics of groundwater and soil water[M]. Beijing: China Water Power Press, 1996. (in Chinese))
    [24] 殷黎明, 杨春和, 罗超文, 等. 高压压水试验在深钻孔中的应用[J]. 岩土力学, 2005, 26(10): 1692-1694. (YING Li-ming, YANG Chun-he, LUO Chao-wen, et al. Application of high water-pressure test to deep borehole[J]. Rock and Soil Mechanics, 2005, 26(10): 1692-1694. (in Chinese))
    [25] OLSSON A, BARTON N. An improved model for hydromenchanical coupling during shearing of rock joints [J]. International Journal of Rock Mechanics & Mining Science, 2001, 38: 317-329.
    [26] 王 媛, 速宝玉. 单裂隙面渗流特性及等效水力隙宽[J]. 水科学进展, 2002, 13(1): 61-68. (WANG Yuan, SU Bao-yu. Research on the behavior of fluid flow in a single fracture and its equivalent hydraulic aperture[J]. Advances in Water Science, 2002, 13(1): 61-68. (in Chinese))
    [27] 刘晓丽, 王恩志, 王思敬, 等. 裂隙岩体渗透性研究[J]. 工程地质学报, 2006, 14(增刊): 344-349. (LIU Xiao-li, WANG En-zhi, WANG Si-jing, et al. Study on permeability of fractured rock mass[J]. Journal of Engineering Geology, 2006, 14(S0): 344-349. (in Chinese))
    [28] 吴金花, 李守巨, 刘迎曦. 具有分形表面裂隙的渗流特性研究[J]. 武汉工业学院学报, 2009, 28(3): 78-80. (WU Jin-hua, LI Shou-ju, LIU Ying-xi. Hydraulic characterization of fracture with fractal surface[J]. Journal of Wuhan Polytechnic University, 2009, 28(3): 78-80. (in Chinese))
    [29] LOMIZE G M. Flow in fractured rocks[M]. Moscow: Gesenergoizdat, 1951.
    [30] ROMM E S. Flow characteristics of fractured rocks[M]. Moscow: Nedra, 1966.
    [31] LOUIS C. A study of groundwater flow in jointed rock and its influence on the stability of rock masses[R]. London: Rock Mechanics Research Report No. 10, Imperial College, 1966.
    [32] 蒋宇静, 李 博, 王 刚, 等. 岩石裂隙渗流特性试验研究的新进展[J]. 岩石力学与工程学报, 2008, 27(12): 2377-2386. (JIANG Yu-jing, LI Bo, WANG Gang, et al. New advances in experimental study on seepage characteristics of rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2377-2386. (in Chinese))
    [33] 张电吉, 白世伟, 杨春和. 裂隙岩体渗透性分析研究[J]. 勘察科学技术, 2003(1): 24-27. (ZHANG Dian-ji, BAI Shi-wei, YANG Chun-he. Analysis and study on permeability of fractured rock mass[J]. Site Investigation Science and Technology, 2003(1): 24-27. (in Chinese))
  • 期刊类型引用(6)

    1. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
    2. 何荣兴,张智源,张星宇,章雅雯. 诱导下岩体裂隙扩展规律研究存在问题及对策. 中国矿业. 2024(10): 168-176 . 百度学术
    3. 刘洋,吴志军,储昭飞,翁磊,徐翔宇,周原,高波,毛春光. 基于FDEM的围压条件下机械冲击破岩机理研究. 中南大学学报(自然科学版). 2023(03): 866-879 . 百度学术
    4. 杨奎斌,朱彦鹏. 考虑后缘裂缝影响的均质土坡滑动面形式及搜索研究. 应用基础与工程科学学报. 2022(05): 1216-1227 . 百度学术
    5. 张亚军,莫思阳,张友良. 基于修正牛顿-拉普森迭代的数值流形法. 计算机仿真. 2022(09): 394-397+440 . 百度学术
    6. 韩笑. 基于高阶块体元-有限元建模的混凝土细观数值分析. 粉煤灰综合利用. 2021(03): 56-63 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  391
  • HTML全文浏览量:  2
  • PDF下载量:  380
  • 被引次数: 13
出版历程
  • 收稿日期:  2014-01-05
  • 发布日期:  2014-08-18

目录

    /

    返回文章
    返回