• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地震荷载特征及其对砂土震陷影响试验研究

陈青生, 熊浩, 高广运

陈青生, 熊浩, 高广运. 地震荷载特征及其对砂土震陷影响试验研究[J]. 岩土工程学报, 2014, 36(8): 1483-1489. DOI: 10.11779/CJGE201408014
引用本文: 陈青生, 熊浩, 高广运. 地震荷载特征及其对砂土震陷影响试验研究[J]. 岩土工程学报, 2014, 36(8): 1483-1489. DOI: 10.11779/CJGE201408014
CHEN Qing-sheng, XIONG Hao, GAO Guang-yun. Experimental study on properties of seismic loading and their influence on seismic compression in sands[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1483-1489. DOI: 10.11779/CJGE201408014
Citation: CHEN Qing-sheng, XIONG Hao, GAO Guang-yun. Experimental study on properties of seismic loading and their influence on seismic compression in sands[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1483-1489. DOI: 10.11779/CJGE201408014

地震荷载特征及其对砂土震陷影响试验研究  English Version

基金项目: 国家自然科学基金项目(41372271); 浙江省自然科学基金项目(Y1110950); 上海市重点学科建设项目(B308)
详细信息
    作者简介:

    陈青生(1982- ),男,福建龙岩人,博士,主要从事岩土动力本构模型与岩土地震工程研究。E-mail: chqsh2006@163.com。

  • 中图分类号: TU411

Experimental study on properties of seismic loading and their influence on seismic compression in sands

  • 摘要: 介绍美国最新一代动循环单剪系统的组成及其特点,分析原始真实地震荷载的输入方法,并对真实地震荷载的输入有效性进行验证。以美国Filter净砂为对象,选择冲击型与振动型地震波作为试验输入荷载,考虑砂土相对密度、上覆荷载,设计不同试验工况研究地震荷载特征及其对砂土震陷的影响,共计试验组数202组。试验结果表明:在同一砂土相对密度和上覆荷载条件下,振幅相同的振动型地震波引起的砂土震陷比冲击型地震波引起的砂土震陷大;砂土震陷主要由最大地震荷载峰值之前的各个较大峰值的地震波引起,其中最大峰值对应的地震波引起的砂土竖向应变最大;对于最大峰值之后的地震波,其峰值应达到该地震波最大峰值的80%左右才对砂土变形具有较明显的贡献作用;冲击型地震波最大峰值之后的各地震波对砂土变形影响不明显;对于振动型地震波,其最大峰值之前及最大峰值之后一定范围内的地震波作用共同决定着砂土变形的大小。
    Abstract: The structure of a dynamic simple shear strain test system which is the latest generation of GCTS made in USA as well as its features is presented. The input method for primarily real seismic loading is analyzed. And the validity of the method is verified. Based on the US Filter clean sand, the preparation process of the sand samples is explained. Two shock types of seismic waves and two vibration types of seismic waves are selected for input loading in tests. Considering the relative density and overlying loading, the test conditions are planned, and 202 dynamic simple shear tests controlled by strain are carried out. The test results show that the seismic compression in sands due to the vibration-type seismic waves is larger than that induced by the shock-type seismic waves under the same relative density of sands and the same overlying loading. The seismic compression is mainly caused by several seismic waves with relatively high peak prior to the maximum peak. And the maximum vertical shear strains in sands are corresponding to the maximum peak seismic waves. For the seismic waves after the maximum peak, the waves whose peak reaches 80% of the maximum peak approximately in the seismic waves have more significant effectiveness on deformations of sands. For the shock-type seismic waves, various waves after the maximum peak have no obvious effect on deformations of sands. However, for the vibration-type seismic waves, the seismic compressions in sands are determined by the waves both prior to the maximum peak and that in a certain range after the maximum peak together.
  • [1] 袁晓铭, 孙 锐, 孟上九. 土体地震大变形分析中Seed有效循环次数方法的局限性[J]. 岩土工程学报, 2004, 26(2): 207-211. (YUAN Xiao-ming, SUN Rui, MENG Shang-jiu. Limitation of the Seed's method of significant cyclic number in analyzing large deformation of soils during earthquake [J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 207-211. (in Chinese))
    [2] NAGASE H, ISHIHARA K. Liquefaction-induced compaction and settlement of sand during earthquakes[J]. Soils and Foundations, 1988, 28(1): 65-76.
    [3] WHANG D, REMIER M F, BRAY J D, et al. Characterization of seismic compression of some compacted fills[J]. Advances in Unsaturated Geotechnics, 2000: 180-194.
    [4] STEWART J P, SMITH P M, WHANG D H. Documentation and analysis of field case histories of seismic compression during the 1994 Northridge, California, Earthquake[R]. Berkeley: University of California, 2002.
    [5] 孟凡超. 液化地基上建筑物不均匀震陷机理初步研究[D].哈尔滨: 中国地震局工程力学研究所, 2006. (MENG Fan-chao. Primary study on mechanism of earthquake- induced differential settlement of buildings on liquefiable subsoil[D]. Haerbin: Institute of Engineering Mechanics, China Earthquake Administration, 2006. (in Chinese))
    [6] SEED H B, SILVER M L. Settlement of dry sands during earthquake[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98(4): 381-397.
    [7] SILVER M L, SEED H B. Volume changes in sands due to cyclic loading[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(9): 1071-1082.
    [8] YOUD T L. Compaction of sands by repeated shear straining[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98(7): 709-725.
    [9] SHAHNAZARI H, TOWHATA I. Torsion shear tests on cyclic stress-dilatancy relationship of sand[J]. Journal of the Japanese Geotechnical Society: Soils and Foundation, 2002, 42(1): 105-119.
    [10] WHANG D H, STEWART J P, BRAY J D. Effect of Compaction conditions on the seismic compression of compacted fill soils[J]. Geotechnical Testing Journal, 2004, 27(4): 371-379.
    [11] STAMATOPOULOS C A, BALLA L N, STAMATOPOULOS A C, et al. Earthquake-induced settlement as a result of densification, measured in laboratory tests[C]// Proc 13th World Conf on Earthquake Engineering. Vancouver, 2004.
    [12] DUKU P M, STEWART J P, WHANG D H. Effect of post-compaction ageing on seismic compression of fine- grained soils[C]// Ground Modification and Seismic Mitigation. Shanghai, 2006.
    [13] DUKU P M, STEWART J P, WHANG D H, et al. Volumetric strains of clean sands subject to cyclic loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2008, 134(8): 1073-085.
    [14] STEWART J P, YEE E, DUKU P. Volume change in unsaturated soils from cyclic loading[R]. Los Angeles: University of California, 2009.
    [15] ISHIHARA K, YASUDA S. Sand liquefaction under random earthquake loading condition[C]// Proceedings of 5th WCEE. Roman, 1973: 329-338.
    [16] 谢定义, 巫志辉. 不规则动脉冲波对砂土液化特性的影响[J]. 岩土工程学报, 1987, 9(4): 1-12. (XIE Ding-yi, WU Zhi-hui. Effect of irregular dynamic impulse history on liquefaction characteristics of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(4): 1-12. (in Chinese))
    [17] 陈青生, 高广运, 何俊锋. 地震荷载不规则性对砂土震陷的影响[J]. 岩土力学, 2011, 32(12): 3713-3720. (CHEN Qing-sheng, GAO Guang-yun, HE Jun-feng. Effect of irregularity of earthquake loading on seismic compression of sand[J]. Rock and Soil Mechanics, 2011, 32(12): 3713-3720. (in Chinese))
    [18] 陈青生, 高广运, 何俊锋, 等. 多向地震荷载对砂土震陷的影响[J]. 岩土工程学报, 2011, 33(7): 1022-1027. (CHEN Qing-sheng, GAO Guang-yun, HE Jun-feng, et al. Effect of multidirectional earthquake loading on seismic compression of sand[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1022-1027. (in Chinese))
    [19] 陈青生, 高广运, RUSSELL A G等. 砂土震陷分析中多维地震荷载等效循环周数计算[J]. 世界地震工程, 2012, 26(增刊): 6-12. (CHEN Qing-sheng, GAO Guang-yun, RUSSELL A G. Computation of equivalent number of uniform strain cycles for seismic compression of sand subjected to multi d irectional earthquake loading[J]. World Earthquake Engineering, 2012, 26(S0): 6-12. (in Chinese))
    [20] LEE J. Engineering characterization of earthquake ground motions[D]. Michigan: The University of Michigan, 2009.
  • 期刊类型引用(7)

    1. 陈凌宇. 考虑子盆地影响的二维盆地非线性地震反应研究. 江苏建筑. 2024(05): 23-25+50 . 百度学术
    2. 周青帅,刘启方. 不均匀软弱夹层对沉积盆地地震动放大的影响研究. 地震工程与工程振动. 2023(06): 183-193 . 百度学术
    3. 魏成前. 入射波的卓越频率对盆地地震动响应的影响. 四川建材. 2022(01): 249-250 . 百度学术
    4. 邵祖鹏,刘启方. 震源深度对二维盆地放大的影响研究. 地震研究. 2022(03): 489-497 . 百度学术
    5. 刘启方. 2014年鲁甸地震龙头山镇盆地共振效应研究. 地震工程与工程振动. 2021(02): 43-52 . 百度学术
    6. 于彦彦,丁海平. 盆地深度对盆地地表地震动及次生面波的影响. 地震工程与工程振动. 2021(03): 147-156 . 百度学术
    7. 强生银,刘启方,温瑞智,王宏伟. 基于二维数值模拟的盆地地震动放大系数. 地震工程与工程振动. 2021(04): 131-144 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 13
出版历程
  • 收稿日期:  2013-10-14
  • 发布日期:  2014-08-18

目录

    /

    返回文章
    返回