• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

筑坝土石料的统一广义塑性本构模型

朱晟, 魏匡民, 林道通

朱晟, 魏匡民, 林道通. 筑坝土石料的统一广义塑性本构模型[J]. 岩土工程学报, 2014, 36(8): 1394-1399. DOI: 10.11779/CJGE201408003
引用本文: 朱晟, 魏匡民, 林道通. 筑坝土石料的统一广义塑性本构模型[J]. 岩土工程学报, 2014, 36(8): 1394-1399. DOI: 10.11779/CJGE201408003
ZHU Sheng, WEI Kuang-min, LIN Dao-tong. Generalized plasticity model for soil and coarse-grained dam materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1394-1399. DOI: 10.11779/CJGE201408003
Citation: ZHU Sheng, WEI Kuang-min, LIN Dao-tong. Generalized plasticity model for soil and coarse-grained dam materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1394-1399. DOI: 10.11779/CJGE201408003

筑坝土石料的统一广义塑性本构模型  English Version

详细信息
    作者简介:

    朱 晟(1965- ),男,博士,教授,博士生导师,主要从事土石坝等水工岩土与环境岩土方面的研究。E-mail: szhu@hhu.edu.cn。

  • 中图分类号: TV641

Generalized plasticity model for soil and coarse-grained dam materials

  • 摘要: 室内三轴试验资料的分析表明:与砾石土心墙料不同,密实堆石料、砂砾料的破坏应力比,随围压的增长出现明显降低;而反映坝料剪胀特征的应力比,随着围压的增长基本不变。根据试验资料,建立了描述土石料剪胀状态和破坏状态的统一应力表达式;针对现有广义塑性模型不能合理反映土石料压缩性的问题,采用改进剪胀方程,利用室内压缩试验和三轴剪切试验成果,构造弹性和塑性模量,提出了一个可以考虑土石料复杂加载特性的实用的统一广义塑性本构模型;将上述模型编制程序,模拟土石料的试验加载,得到预测值与试验数据吻合良好,可较好反映筑坝土石料的应力变形特性。
    Abstract: The triaxial test data show that the stress ratio at the failure state of compacted rockfill and gravel significantly decreases with the increase of confining pressure, while their stress ratio at the critical state is substantially constant with high confining pressure. The expressions for the stress ratios at the failure state and the critical state are established according to the experimental data. For the existing generalized plasticity model which does not reasonably reflect the compressibility of soil-rockfill, a practical generalized plasticity constitutive model for soil aggregates is proposed considering complex loading conditions by adopting the improved dilatancy equation and using the indoor compression and triaxial test results. The calculated values are in good agreement with the experimental data by compiling programs for the above model to simulate the test load of earth-rockfill materials. The proposed model can reasonably reflect their stress and deformation characteristics.
  • [1] ZIENKIEWICZ O C, MROZ Z. Generalized plasticity formulation and applications to geomechanics[C]// Mechanics of Engineering Materials. New York: Wiley, 1984: 655-679.
    [2] PASTOR M, ZIENKIEWICZ O C. A generalized plasticity, hierarchial model for sand under monotonic and cyclic loading[C]// Numerical methods in geomechanics. London: Jackson, 1986: 131-150.
    [3] PASTOR M, ZIENKIEWICZ O C, CHAN A H C. Generalizedplasticity and the modeling of soil behavior[J]. Int J Numer Analyt Meth Geomech, 1990, 14(3): 151-190.
    [4] LING Hoe I, LIU Hua-bei. Pressure-level dependency and densification behaviour of sand through generalized plasticity model[J]. Journal of Engineering Mechanics, 2003, 129(8): 851-860.
    [5] 陈生水, 傅中志, 韩华强. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489-1495. (CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1495. (in Chinese))
    [6] 陈生水, 韩华强, 傅 华. 循环荷载作用下堆石料应力变形特性研究[J]. 岩土工程学报, 2010, 32(8): 1151-1157. (CHEN Sheng-shui, HAN Hua-qiang, FU Hua. Stress and deformation behavior s of rockfill under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1151-1157. (in Chinese))
    [7] DUNCAN J M, BYRNE P, WONG K S, et al. Strength, stress-strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses[C]// Report No.UCB.GT.80-01. Berkeley: University of California, 1980.
    [8] DE Mello V F B. Reflections on decisions of practical significance to embankment dam construction[J]. Géotechnique, 1977, 27(3): 279-335.
    [9] 姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学E辑, 2004, 34(11): 1283-1299. (YAO Yang-ping, LU De-chun, ZHOU An-nan, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Ser. E Engineering & Materials Science, 2004, 34(11): 1283-1299. (in Chinese))
    [10] 张 辉, 朱俊高, 王俊杰. 击实砾质土抗拉强度试验研究.岩石力学与工程学报, 2006, 25(增刊2): 4186-4190. (ZHANG Hui, ZHU Jun-gao, Wang Jun-jie. Experimental study on tensile strength of compacted gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 25(S2): 4186-4190. (in Chinese))
    [11] ALONSO E E. Dilatancy of coarse granular aggregates[J]. Springer Proceedings in Physics, 2007, 12(3): 19-135.
    [12] 杨 光, 孙 逊, 于玉贞, 等. 不同应力路径下粗粒料力学特性试验研究[J]. 岩土力学, 2010, 31(4): 1118-1122. (YANG Guang, SUN Xun, YU Yu-zhen, et al. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. Rock and Soil Mechanics, 2010, 31(4): 1118-1122. (in Chinese))
    [13] 中国水电顾问集团成勘院. 如美筑坝材料室内试验报告[R]. 成都: 中国水电顾问集团成勘院, 2011. (Chengdu Engineering Corporation. Indoor testing results of the Rumei dam materials[R]. Chengdu: Chengdu Engineering Corporation, 2011. (in Chinese))
    [14] HARDIN B. Crushing of soil particles[J]. J Geotech Engrg, 1985, 111(10): 1177-1192.
    [15] ROWE P W. The stress-dilatancy relation for static equilibrium of an essembly of particles in contact[C]// Proc Roy Soc London. London, 1962, A269: 500-527.
    [16] LAGIOIA R, PUZRIN A M, POTTS D M. A new Versatile expression for yield and plastic potential surfaces[J]. Computers and Geotechnics 1996, 19(3): 171-191.
    [17] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [18] NISHI K, KANATANI M. Constitutive relations for sand under cyclic loading based on elasto-plasticity theory[J]. Soils and Foundations, 1990, 30(2): 43-59.
    [19] NAKAI T. An isotropic hardening elastoplastic model considering the stress path dependency in three dimensional stresses[J]. Soils and Foundations, 1989, 29(1): 119-139.
    [20] 姚仰平, 黄 冠, 王乃东. 堆石料的应力-应变特性及其三维破碎本构模型[J]. 工业建筑, 2011, 41(9): 12-17. (YAO Yang-ping, HUANG Guan, WANG Nai-dong. Stress-strain characteristic and three-dimensional constitutive model of rockfill considering crushing[J]. Industrial Construction, 2011, 41(9): 12-17. (in Chinese))
    [21] OLDECOP L, ALONSO E E. A model for rockfill compressibility[J]. Géotechnique, 2001, 51(2): 127-140.
    [22] 朱 晟, 王永明, 胡祥群. 免疫遗传算法在土石坝筑坝粗粒料本构模型参数反演中的应用研究[J]. 岩土力学, 2010, 31(3): 961-966. (ZHU Sheng, WANG Yong-ming, HU Xiang-qun. Application of immune genetic algorithm to back analysis for parameters in model of rockfill dam coarse grain materials[J]. Rock and Soil Mechanics, 2010, 31(3): 961-966. (in Chinese))
    [23] 杨 光, 孙 逊, 于玉贞, 等. 循环荷载作用下粗粒料变形特性的试验研究[J]. 水力发电学报, 2010, 29(4): 154-159. (YANG Guang, SUN Jiang-long, YU Yu-zhen, et al. Experimental study on the deformation characteristics of coarse-grained materials under cyclic loading[J]. Journal of Hydroelectric Engineering, 2010, 29(4): 154-159. (in Chinese))
  • 期刊类型引用(6)

    1. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
    2. 何荣兴,张智源,张星宇,章雅雯. 诱导下岩体裂隙扩展规律研究存在问题及对策. 中国矿业. 2024(10): 168-176 . 百度学术
    3. 刘洋,吴志军,储昭飞,翁磊,徐翔宇,周原,高波,毛春光. 基于FDEM的围压条件下机械冲击破岩机理研究. 中南大学学报(自然科学版). 2023(03): 866-879 . 百度学术
    4. 杨奎斌,朱彦鹏. 考虑后缘裂缝影响的均质土坡滑动面形式及搜索研究. 应用基础与工程科学学报. 2022(05): 1216-1227 . 百度学术
    5. 张亚军,莫思阳,张友良. 基于修正牛顿-拉普森迭代的数值流形法. 计算机仿真. 2022(09): 394-397+440 . 百度学术
    6. 韩笑. 基于高阶块体元-有限元建模的混凝土细观数值分析. 粉煤灰综合利用. 2021(03): 56-63 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 13
出版历程
  • 收稿日期:  2013-08-06
  • 发布日期:  2014-08-18

目录

    /

    返回文章
    返回