• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

受拉加载方向变化对Kaiser效应点准确度的影响

傅翔, 谢强, 江小城, 王龙飞, 刘华吉, 张晓旋

傅翔, 谢强, 江小城, 王龙飞, 刘华吉, 张晓旋. 受拉加载方向变化对Kaiser效应点准确度的影响[J]. 岩土工程学报, 2014, 36(7): 1365-1370. DOI: 10.11779/CJGE201407022
引用本文: 傅翔, 谢强, 江小城, 王龙飞, 刘华吉, 张晓旋. 受拉加载方向变化对Kaiser效应点准确度的影响[J]. 岩土工程学报, 2014, 36(7): 1365-1370. DOI: 10.11779/CJGE201407022
FU Xiang, XIE Qiang, JIANG Xiao-cheng, WANG Long-fei, LIU Hua-ji, ZHANG Xiao-xuan. Influence of tensile loading direction on accuracy of determining Kaiser effect point[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1365-1370. DOI: 10.11779/CJGE201407022
Citation: FU Xiang, XIE Qiang, JIANG Xiao-cheng, WANG Long-fei, LIU Hua-ji, ZHANG Xiao-xuan. Influence of tensile loading direction on accuracy of determining Kaiser effect point[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1365-1370. DOI: 10.11779/CJGE201407022

受拉加载方向变化对Kaiser效应点准确度的影响  English Version

基金项目: 国家自然科学基金青年科学基金项目(51008319); 第43批留学回国人员科研启动基金项目(教外司留[2011]1568号); 长江学者和创新团队发展计划资助项目(IRT1045)
详细信息
    作者简介:

    傅 翔(1982- ),男,重庆人,博士研究生,主要从事与岩土工程相关的科研工作。E-mail: fmsx2000@163.com。

    通讯作者:

    谢强

Influence of tensile loading direction on accuracy of determining Kaiser effect point

  • 摘要: 基于Kaiser效应由裂纹扩展释放弹性波产生的认识,依据断裂力学理论就加载方向变化对Kaiser效应的影响进行分析。研究了远场应力为拉应力时,二维Ⅰ,Ⅱ型混合裂纹扩展的临界应力相对值、FR比值与加载方向偏转角之间的关系。结果表明:加载方向对Kaiser效应点反应岩石记忆先期荷载值的准确度有较大影响,其变化大小与临界应力相对值正相关。若第一次加载方向与裂纹面垂直,偏转角度从0°~90°变化,裂纹扩展临界应力相对值和FR比值均不断增大。偏转角为0°~20°时,FR比值变化范围为1~1.1,Kaiser效应点记忆较为准确,但第二方向所记忆的荷载并非该方向的正应力值。偏转角为90°时,临界应力相对值和FR比值均趋近于无穷大,裂纹在该裂纹面方向上不能发展,说明Kaiser效应消失。这与部分学者的试验结果一致,说明此类劈裂试验中Kaiser效应的产生,裂纹扩展是主要原因,也在某种程度上解释了该类试验加载方向偏转角度越大,Kaiser效应越来越不明显的问题。
    Abstract: The Kaiser effect is caused by the elastic waves generated by the crack propagation. Based on this common understanding and the theory of fracture mechanism, the influence of the loading direction on the Kaiser effect is discussed when the far field stress is the tensile one. The relationship between the critical stress of the crack propagation for I + II mixed mode in plane, the value of Felicity ratio (FR) and the rotational angle of loading are studied. The results show that the loading direction has important influence on whether the Kaiser effect can correctly reproduce the information on the peak stresses of the rock experienced in the past. If the loading in the first cycle is perpendicular to the crack and the rotational angle changes from 0° to 90°, the critical stress of the crack propagation and the FR value will increase with the rotational angle. When the rotational angle varies between 0° to 20°, the FR will value the changes between 1 to 1.1, and the “Memory” of the Kaiser effect is more accurate, while the stress memorized by rock in the second direction is not the normal one according to that direction. When the rotational angle is 90°, both the critical stress of the crack propagation and the FR value increase to infinite, and the crack isn’t able to propagate in its crack surface. Hence it results in complete disappearance of the Kaiser effect. They are consistent with those of some other researchers. Therefore it can be concluded that the crack propagation is the main cause of the Kaiser effect in this kind of split tests. It can also explain why the Kaiser effect becomes more and more inapparent with the increasing rotation angle.
  • [1] KAISER J. Erkenntnisse und folgerungen aus der messung von gera-uschen bei zugbeanspruchung von metallischen werkstoffen[J]. Archiv Eisenhüttenwesen, 1953, 24(1/2): 43-45.
    [2] BARR S P, HUNT D P. Anelastic strain recovery and the Kaiser Effect retention span in the carrmenellis granite[J]. Rock Mechanics and Rock Engineering, 1999, 32(3): 169-193.
    [3] GOODMAN R E. Subaudible noise during compression of Rock[J]. Gco Soe Am Bull, 1963, 74: 487-490.
    [4] FEERINEIS N. Anwendung der schallemissionanalyse(SEA) als zerstorungsfreies Prufverfahren fur Beton[J]. Dissertation TH Darmstadt, 1982: 511-524.
    [5] 纪洪广, 李造鼎. 混凝土材料凯塞效应与Felicity效应关系的研究[J]. 应用声学, 1997, 16(6): 33-44. (JI Hong-guang, LI Zao-ding. Experimental study on the relationship of kiser and felieity effect in concrete material[J]. Applied Acoustics, 1997, 16(6): 33-44. (in Chinese))
    [6] 李庶林, 唐海燕. 不同加载条件下岩石材料破裂过程的声发射特性研究[J]. 岩土工程学报, 2010, 32(1): 47-52. (LI Shu-lin, TANG Hai-yan. Acoustic emission characteristics in failure process of rock under different uniaxial compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 47-52. (in Chinese))
    [7] 卢运虎, 陈 勉, 金 衍, 等. 碳酸盐岩声发射地应力测量方法实验研究[J]. 岩土工程学报, 2011, 33(8): 62-68. (LU Yun-hu, CHEN Mian, JIN Yan, et al. Experimental study on stress measurement for sound emission in carbonate formation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 62-68. (in Chinese))
    [8] KURITA K, FUJII N. Stress memory of crystalline rocks in acoustic emission[J]. Geophys Res Lett, 1979, 6: 9-12.
    [9] YOSHIKAWA S, MOGI K. A new method for estimation of the crustal stress from rock samples: laboratory study in the case of uniaxial compression[J]. Tectonophysics, 1981, 74: 323-339.
    [10] LI C, NORDLUND E. Experimental verification of the Kaiser effect in rocks[J]. Rock Mech Rock Eng , 1993, 26: 333-351.
    [11] GOODMAN R E. Subaudible noise during compression of rocks[J]. Bull Geol Soc Am , 1963, 74: 487-490.
    [12] HOLCOMB D J. Using acoustic emission to determine in situ stress: problems and promise[J]. Geomechanics, 1983, 57: 11-21.
    [13] YOSHIKAWA S, MOGI K. Experimental studies on the effect of stress history on acoustic emission activity—a possibility for estimation of rock stress[J]. J Acoust Emission , 1989, 8(4): 113-123.
    [14] KOERNER R M, LORD A E. AE detection of prestress in soil and rock[C]// Proceedings of the Fourth Conference on AE/MA in Geologic Structures and Materials. Clausthal- Zellerfeld: Trans Tech Publications, 1989: 73-86.
    [15] FILIMONOV Y L, LAVROV A V, SHKURATNIK V L. Prospects of memory effects for stress measurement applications in rock salt[C]// Proceedings of EUROCK’2001 Symposium. Rotterdam: A A Balkema, 2001: 59-63.
    [16] SHIN K, KANAGAWA T. Kaiser effect of rock in acousto-elasticity, AE and DR[C]// Proceedings of the Fifth Conference on AE/MA in Geologic Structures and Materials. Clausthal-Zellerfeld: Trans Tech Publications, 1995: 197-204.
    [17] MICHIHIRO K, HATA K, YOSHIOKA H, et al. Determination of the initial stresses on rock mass using acoustic emission method[J]. J Acoust Emission, 1991/1992, 10(1/2): 63-76.
    [18] 陈 勉, 张 艳, 金 衍, 等. 加载速率对不同岩性岩石Kaiser效应影响的试验研究[J]. 岩石力学与工程学报, 2009, 28 (增刊l): 2599-2606. (CHEN Mian, ZHANG Yan, JIN Yan, et al. Experimental study of influence of loading rate on Kaiser effect of different lithological rocks[J]. Chinese Journal of Geotechnical Engineering, 2009, 28(S1): 2599-2606. (in Chinese))
    [19] LAVROV A. Kaiser effect observation in brittle rock cyclically loaded with different loading rates[J]. Mech Mater, 2001, 33: 669-677.
    [20] STUART C E, MEREDITH P G, MURRELL S A F, et al. Anisotropic crack damage and stress-memory effect in rocks under triaxial loading[J]. Int J Rock Mech Min Sci Geomech Abstr, 1993, 30: 937-941.
    [21] MIHIHIRO K. Rock at great depth[M]. Rotterdam: A A Balkema. 1989: 1025-1032.
    [22] 卢兴宇. 关于Kaiser效应和应力方向的初步探讨[J]. 重庆建筑工程学院院报, 1987(7): 45-46. (LU Xing-yu. Preliminary discussion on the Kaiser effect and the stress orientation[J]. Journal of College of Civil Engineering, Chong-qing, 1987(7): 45-46. (in Chinese))
    [23] 张 雪, 刘建中, 曹新玲, 等. 岩石在有围压条件下的声发射凯瑟效应[J]. 东北地震研究, 1990(12): 77-86. (ZHANG Xue, LIU Jian-zhong, CAO Xin-ling, et al. The Kaiser effect of acoustic emission of rocks under the condition with confining pressure[J]. Northeastern Seismological Research, 1990(12): 77-86. (in Chinese))
    [24] 黄志鹏, 朱可善, 郭映忠. 岩石Kaiser 效应方向独立性试验研究[J]. 长江科学院院报, 1998, 15(2): 34-37. (HUANG Zhi-peng, ZHU Ke-shan, GUO Ying-zhong. Experimental study on rock kaiser effect’s direction independence[J]. Journal of Yangtze River Scientific Research Institute, 1998, 15(2): 34-37. (in Chinese))
    [25] 方亚如. 岩石声发射Kaiser 效应的方向独立性[J]. 地震地磁观测与研究, 1986, 7(2): 22-28. (FANG Ya-ru. Research on direction independence of rock kaiser effect[J]. Seismological and Geomagnetic Observation and Research, 1986, 7(2): 22-28. (in Chinese))
    [26] 黄润秋, 王士天. 用Kaiser 效应测试地应力的新认识[C]//全国第三届岩土工程地质大会论文集. 北京, 1988: 56-60. (HUANG Run-qiu, WANG Shi-tian. The new understanding of using the Kaiser effect to test the crustal stres[C]// The 3rd Conference of Geo-Engineering. Beijing, 1988: 56-60. (in Chinese))
    [27] HOLCOMB D J, COSTIN L S. Detecting damage surfaces in brittle materials using acoustic emissions[J]. J Appl Mech 1986, 53: 536-544.
    [28] HOLCOMB D J. General theory of the Kaiser effect[J]. Int J Rock Mech Min Sci Geomech Abstr , 1993, 30: 929-935.
    [29] LAVROV A, VERVOOTR A, WEVERS M, et al. Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(3): 287-302.
    [30] 阎 南. 岩石Kaiser 效应方向独立性研究[D]. 昆明: 昆明理工大学, 2008. (YAN Nan. Research on direction independence of rock kaiser effect[D]. Kunming: Kunming University of Science and Technology, 2008. (in Chinese))
计量
  • 文章访问数:  329
  • HTML全文浏览量:  2
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-29
  • 发布日期:  2014-07-24

目录

    /

    返回文章
    返回