• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同地层波速模型对沉积谷地地震响应规律的影响:FEM-IBIEM模拟研究

刘中宪, 王冬

刘中宪, 王冬. 不同地层波速模型对沉积谷地地震响应规律的影响:FEM-IBIEM模拟研究[J]. 岩土工程学报, 2014, 36(7): 1289-1301. DOI: 10.11779/CJGE201407013
引用本文: 刘中宪, 王冬. 不同地层波速模型对沉积谷地地震响应规律的影响:FEM-IBIEM模拟研究[J]. 岩土工程学报, 2014, 36(7): 1289-1301. DOI: 10.11779/CJGE201407013
LIU Zhong-xian, WANG Dong. Effect of different wave velocity models on seismic response of alluvial valley based on FEM-IBIEM[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1289-1301. DOI: 10.11779/CJGE201407013
Citation: LIU Zhong-xian, WANG Dong. Effect of different wave velocity models on seismic response of alluvial valley based on FEM-IBIEM[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1289-1301. DOI: 10.11779/CJGE201407013

不同地层波速模型对沉积谷地地震响应规律的影响:FEM-IBIEM模拟研究  English Version

基金项目: 国家自然科学基金项目(51278327); 国家重点基础研究发展计划(973计划)(2011CB013603); 天津市应用基础与前沿技术研究项目(14JCYBJC21900)
详细信息
    作者简介:

    刘中宪(1982- ),男,河南泌阳人,博士后,副教授,主要从事地震工程、工程波动领域的研究和教学工作。E-mail: zhongxian1212@163.com。

Effect of different wave velocity models on seismic response of alluvial valley based on FEM-IBIEM

  • 摘要: 准确的地层波速模型是场地反应分析的关键,而实际地层波速测定存在很大的不确定性。计算中通常采用简化的均质和分层模型,或者根据钻孔数据将波速沿深度进行线性、二次或指数拟合。这些不同波速模型对沉积谷地地震响应的影响规律究竟如何目前尚未得以厘清。为此尝试采用有限元—间接边界积分方程耦合方法,通过频时域定量计算,从波动学角度揭示不同波速模型沉积谷地地震响应的差别及其本质所在。数值计算结果表明:低频波入射时(),常用的几种波速模型对地表位移反应影响不大。但随着频率增大,不同波速模型对计算结果的影响不能忽略。着重考察了线性模型和均质模型之间的反应差别:发现线性模型情况下高频共振和盆地边缘效应更为显著,由此导致地震能量主要积聚在近地表土层,并使得沉积内部地表位移幅值显著放大,地震动持时明显增长。另外,沉积谷地形状和入射角度对地震波聚焦特征也具有重要影响,不同波型入射下聚焦区域有很大差别。实际沉积谷地地震动场精确模拟需获取较为精细的地层波速结构和边界几何特征。
    Abstract: Accurate wave velocity model is essential for site effect analysis, while there is large uncertainty in determining the actual wave velocity. The simplified homogeneous and layered model is usually adopted, or the wave velocity is assumed to vary linearly, quadraticly and exponentially according to the drilling data. However, the effect of different velocity models on seismic response of the alluvial valley is not clear. It is attempted to reveal the influence mechanism through quantitative analysis both in frequency and time domains using an accurate finite element-indirect boundary integral equation method. The numerical results show that for incident low-frequency waves (), different velocity models have little influence on the surface displacement amplitude. As the frequency increases, the influence becomes more and more significant. The difference between the linear model and homogeneous model is highlighted. It is found that the high-frequency resonance and the basin edge effect in the case of linear models seem more remarkable, which lead to the concentration of earthquake energy mainly in the near surface layer, the surface displacement amplitude in the valley is significantly enlarged, and the duration of earthquake ground motion increases obviously as well. In addition, the alluvial valley shape and the incident angle also have significant influence on the scattering characteristics of seismic waves, and the focusing area varies for different wave types. It is necessary to obtain wave velocity structure and boundary geometrical features of actual alluvial valley for the accurate simulation of earthquake ground motion.
  • [1] TRIFUNAC M D. Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves[J]. Bulletin of the Seismological Society of America, 1971, 61(6): 1755-1770.
    [2] YUAN X M, LIAO Z P. Scattering of plane SH waves by a cylindrical alluvial valley of circular-arc cross-section[J]. Earthquake Engineering and Structural Dynamics, 1995, 24(10): 1303-1313.
    [3] 梁建文, 张郁山, 顾晓鲁, 等. 圆弧形层状沉积河谷场地在平面SH波入射下动力响应分析[J]. 岩土工程学报, 2000, 22(4): 396-401. (LIANG Jian-wen, ZHANG Yu-shan, GU Xiao-lu, et al. Surface motion of circular-arc layered alluvial valleys for incident plane SH waves[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 396-401. (in Chinese))
    [4] BOORE D M, LARNER K L, AKI K. Comparison of two independent methods for the solution of wave scattering problems: response of a sedimentary basin to incident SH waves[J]. Journal of Geophysical Research, 1971, 76(2): 558-569.
    [5] 周国良, 李小军, 侯春林, 等. SV 波入射下河谷地形地震动分布特征分析[J]. 岩土力学, 2012, 33(4): 1161-1166. (ZHOU Guo-liang, LI Xiao-jun, HOU Chun-lin, et al. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves[J]. Rock and Soil Mechanics, 2012, 33(4): 1161-1166. (in Chinese))
    [6] 刘中宪, 梁建文, 赵瑞斌. 流体饱和层状半空间中沉积谷地对地震波的散射—IBIEM 求解[J]. 岩土工程学报, 2013, 35(3): 512-522. (LIU Zhong-xian, LIANG Jian-wen, ZHAO Rui-bin. Indirect boundary integral equation method for solving scattering of seismic waves by an alluvial valley in fluid poroelastic layered half-space[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 512-522. (in Chinese))
    [7] KAWASE H, KEIITI A K. A study on the response of a soft basin for incident P, S, Rayleigh waves with special reference to the long duration observed in Mexico city[J]. Bulletin of Seismological Society of America, 1989, 79(5): 1361-1382.
    [8] SANCHEZ-SESMA F J, RAMOS-MARTINEZ J, CAMPILLOR M. An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh Waves[J]. Earthquake Engineering and Structural Dynamics, 1993, 22(4): 279-295.
    [9] DRAVINSKI M, MOSSESSIAN T K. Application of a hybrid method for scattering of P, SV and Rayleigh waves by near-surface irregularities[J]. Bulletin of the Seismological Society of America, 1987, 77(5): 1784-1803.
    [10] 高玉峰, 刘汉龙. 合肥膨胀土剪切波速的特征分析[J]. 岩土工程学报, 2003, 25(3): 371-373. (GAO Yu-feng, LIU Han-long. Study on shear wave velocities in expansive soils of Hefei[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 371-373. (in Chinese))
    [11] 邱志刚, 薄景山, 罗奇峰, 等. 土壤剪切波速与埋深关系的统计分析[J]. 世界地震工程, 2011, 27(3): 81-88. (QIU Zhi-gang, BO Jing-shan, LUO Qi-feng. Statistical analysis of relationship between shear wave velocity and depth of soil[J]. World Earthquake Engineering, 2011, 27(3): 81-88. (in Chinese))
    [12] WANG Y, TAKENAKA H, FURUMURA T. Effect of vertical velocity gradient on ground motion in a sediment-filled basin due to incident SV wave[J]. Earth Planets and Space, 2000, 52(1): 13-24.
    [13] LUZÓN F, SÁNCHEZ-SESMA F J, PÉREZ-RUIZ J A, et al. In-plane seismic response of inhomogeneous alluvial valleys with vertical gradients of velocities and constant Poisson ratio[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(6): 994-1004.
    [14] GE Z. Simulation of the seismic response of sedimentary basins with constant-gradient velocity along arbitrary direction using boundary element method: SH case[J]. Earthquake Science, 2010, 23(2): 149-155.
    [15] HAGSTROM T, MAR-OR A, GIVOLI D. High-order local absorbing conditions for the wave equation: Extensions and improvements[J]. Journal of Computational Physics, 2008, 227(6): 3322-3357.
    [16] LAMB H. On the propagation of tremors over the surface of an elastic solid[C]// Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. London, 1904, 203: 1-42.
    [17] DRAVINSKI M, MOSSESSIAN T K. Scattering of plane harmonic P, SV, and Rayleigh waves by dipping layers of arbitrary shape[J]. Bulletin of the Seismological Society of America, 1987, 77(1): 212-235.
计量
  • 文章访问数:  404
  • HTML全文浏览量:  3
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 发布日期:  2014-07-24

目录

    /

    返回文章
    返回