• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

页岩水力压裂裂缝形态的试验研究

衡帅, 杨春和, 曾义金, 郭印同, 王磊, 侯振坤

衡帅, 杨春和, 曾义金, 郭印同, 王磊, 侯振坤. 页岩水力压裂裂缝形态的试验研究[J]. 岩土工程学报, 2014, 36(7): 1243-1251. DOI: 10.11779/CJGE201407008
引用本文: 衡帅, 杨春和, 曾义金, 郭印同, 王磊, 侯振坤. 页岩水力压裂裂缝形态的试验研究[J]. 岩土工程学报, 2014, 36(7): 1243-1251. DOI: 10.11779/CJGE201407008
HENG Shuai, YANG Chun-he, ZENG Yi-jin, GUO Yin-tong, WANG Lei, HOU Zhen-kun. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1243-1251. DOI: 10.11779/CJGE201407008
Citation: HENG Shuai, YANG Chun-he, ZENG Yi-jin, GUO Yin-tong, WANG Lei, HOU Zhen-kun. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1243-1251. DOI: 10.11779/CJGE201407008

页岩水力压裂裂缝形态的试验研究  English Version

基金项目: 国家自然科学基金项目(51104144); 国家重点基础研究发展计划(973计划)(2010CB226701); 中石化科技部项目(P11015)
详细信息
    作者简介:

    衡 帅(1985- ),男,河南新安人,博士研究生,主要从事页岩气水力压裂开采过程中的岩石力学问题研究。E-mail: shheng@yeah.net。

Experimental study on hydraulic fracture geometry of shale

  • 摘要: 为深入认识页岩储层水力裂缝延伸规律及其空间形态,采用真三轴岩土工程模型试验机、压裂泵压伺服控制系统、Disp声发射定位系统和工业CT扫描技术,建立了一套室内页岩水力压裂大型物理模拟试验方法,并通过试验后页岩试样水力裂缝的延伸与空间展布规律,初步探讨了页岩水力压裂网状裂缝的形成机理。结果表明:裂缝延伸时泵压曲线典型的锯齿状波动与裂缝网络的形成密切相关,是页岩体积压裂的一个明显特征。页岩层理面的发育程度、泵压大小和地应力状态对裂缝形态有显著影响,水力裂缝在层理面内的分叉、转向进而沟通天然裂缝是形成裂缝网络的关键,而层理面过弱或过强都不利于网状裂缝的形成;对层理面胶结强度适中的地层,地应力对裂缝的延伸有较大影响;在低排量且维持较低泵压时,裂缝易于转向,且更易形成网状裂缝,而达到体积压裂。建立的页岩水力压裂物理模拟试验方法及试验结果可为页岩气压裂优化设计等提供技术支持。
    Abstract: For thorough understanding of the propagation and spatial form of hydraulic fracture of shale formations, a large-scale physical simulation test method for hydraulic fracture of shale is established by means of the large real triaxial simulation experiment system, servo control system of hydraulic fracturing, acoustic emission (AE) source orientation technique and CT scanning technology. The mechanism of the formation of the fracture network is exposed according to the crack extension and special distribution of shale tested by this method. The results indicate that the typical jagged pump pressure-time curve at extending stage, which may be closely related to the formation of fracture network, is an obvious feature of the volume fracture of shale. The fracture morphology is strongly influenced by the development degree of bedding planes, pump pressures and stress conditions. Branching and re-orientation of hydraulic fractures in bedding planes and then interconnecting with natural fractures are the main factors of the formation of fracture network. The bedding plane which is too weak or too strong is not conducive to the formation of fracture mesh. The stress condition plays a great role in controlling the extension of fractures for intermediate formations. Hydraulic fractures are easy to change direction and propagate when the pump pressure is kept at a lower level. The physical simulation method for hydraulic fracture and the corresponding test results can provide references for fracture optimization design in exploiting shale gas.
  • [1] NELSON P H. Pore-throat sizes in sandstones, tight sandstones and shales[J]. A A P G Bulletin, 2009, 93(3): 329-340.
    [2] 马永生, 冯建辉, 牟泽辉, 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012, 6(4): 22-30. (MA Yong- sheng, FENG Jian-hui, MOU Ze-hui, et al. Potential and current situation of unconventional oil andgas resource in Sinopec[J]. Engineering Sciences, 2012, 6(4): 22-30. (in Chinese))
    [3] 唐 颖, 唐 玄, 王广源, 等. 页岩气开发水力压裂技术综述[J]. 地质通报, 2011, 30(2/3): 393-399. (TANG Ying, TANG Xuan, WANG Guang-yuan, et al. Summary of hydraulic fracturing technology in shale gas development[J]. Geological Bulletin of China, 2011, 30(2/3): 393-399. (in Chinese))
    [4] 邹才能, 董大忠, 王社较, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. (ZOU Cai-neng, DONG Da-zhong, WANG She-jiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. (in Chinese))
    [5] 王公昌, 姜瑞忠, 徐建春. 当前页岩气资源开发的瓶颈及建议[J]. 复杂油气藏, 2012, 5(2): 10-14. (WANG Gong-chang, JIANG Rui-zhong, XU Jian-chun. Analysis and advice for shale gas development[J]. Complex Hydrocarbon Reservoirs, 2012, 5(2): 10-14. (in Chinese))
    [6] 谢和平, 高 峰, 鞠 杨, 等. 页岩储层压裂改造的非常规理论与技术构想[J]. 四川大学学报(工程科学版), 2012, 44(6): 1-6. (XIE He-ping, GAO Feng, JU Yang, et al. Unconventional theories and strategies for fracturing treatments of shale gas strata[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(6): 1-6. (in Chinese))
    [7] WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220.
    [8] WARPINSKI N R. Hydraulic fracturing in tight, fissured media[J]. Journal of Petroleum Technology, 1991, 42(2): 146-151.
    [9] WARPINSKI N R, LORENZ J C, SANDIA N, et al. Examination of a cored hydraulic fracture in a deep gas well[J]. SPE Production & Facilities, 1993, 8(3): 150-158.
    [10] MAHRER K D. A review and perspective on far-field hydraulic fracture geometry studies[J]. Journal of Petroleum Science and Engineering, 1999, 24(1): 13-28.
    [11] BEUGELSDIJK L J L, DE Pater C J, SATO K. Experimental hydraulic fracture propagation in a multi-fractured medium[C]// SPE Asia Pacific Conference on Integrated Modelling for Asset Management. Society of Petroleum Engineers, 2000.
    [12] BLANTON T L. An experimental study of interaction between hydraulically induced and pre-existing fractures[C]// SPE Unconventional Gas Recovery Symposium. Society of Petroleum Engineers, 1982.
    [13] BLANTON T L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[C]// SPE Unconventional Gas Technology Symposium. Society of Petroleum Engineers, 1986.
    [14] FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to improve stimulations in the barnett shale[J]. SPE Production & Facilities, 2005, 20(2): 85-93.
    [15] FISHER M K, HEINZE J R, HARRIS C D, et al. Optimizing horizontal completions in the Barnett shale with microseismic fracture mapping[J]. Journal of Petroleum Technology, 2005, 57(3): 41-42.
    [16] MAXWELL S C, URBANCIC T I, STEINSBERGER N, et al. Microseismic imaging of hydraulic fracture complexity in the Barnett shale[C]// SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2002.
    [17] URBANCIC T I, MAXWELL S C. Microseismic imaging of fracture behavior in naturally fractured reservoirs[C]// SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002.
    [18] MAYERHOFER M J, LOLON E P, YOUNGBLOOD J E, et al. Integration of microseismic-fracture-mapping results with numerical fracture network production modeling in the Barnett Shale[C]// SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2006.
    [19] MAYERHOFER M J, LOLON E, WARPINSKI N R, et al. What is stimulated reservoir volume?[J]. SPE Production & Operations, 2010, 25(1): 89-98.
    [20] 陈 勉, 庞 飞, 金 衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报, 2000, 19(增刊): 868-872. (CHEN Mian, PANG Fei, JIN Yan. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S0): 868-872. (in Chinese))
    [21] 周 健, 陈 勉, 金 衍, 等. 裂缝性储层水力裂缝扩展机理试验研究[J]. 石油学报, 2007, 28(5): 109-113. (ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2007, 28(5): 109-113.(in Chinese))
    [22] 姚 飞, 陈 勉, 吴晓东, 等. 天然裂缝性地层水力裂缝延伸物理模拟研究[J]. 石油钻采工艺, 2008, 30(3): 83-86. (YAO Fei, CHEN Mian, WU Xiao-dong, et al. Physical simulation of hydraulic fracture propagation in naturally fractured formations[J]. Oil Drilling & Production Technology, 2008, 30(3): 83-86. (in Chinese))
计量
  • 文章访问数:  797
  • HTML全文浏览量:  7
  • PDF下载量:  1370
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-15
  • 发布日期:  2014-07-24

目录

    /

    返回文章
    返回