• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于虚拟力法的盾构隧道施工扰动地层附加应力分析

张治国, 黄茂松, 王卫东

张治国, 黄茂松, 王卫东. 基于虚拟力法的盾构隧道施工扰动地层附加应力分析[J]. 岩土工程学报, 2014, 36(7): 1235-1242. DOI: 10.11779/CJGE201407007
引用本文: 张治国, 黄茂松, 王卫东. 基于虚拟力法的盾构隧道施工扰动地层附加应力分析[J]. 岩土工程学报, 2014, 36(7): 1235-1242. DOI: 10.11779/CJGE201407007
ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong. Additional stresses of disturbed soils induced by shield tunneling based on fictitious force method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1235-1242. DOI: 10.11779/CJGE201407007
Citation: ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong. Additional stresses of disturbed soils induced by shield tunneling based on fictitious force method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1235-1242. DOI: 10.11779/CJGE201407007

基于虚拟力法的盾构隧道施工扰动地层附加应力分析  English Version

基金项目: 国家自然科学基金项目(51008188); 同济大学岩土及地下工程教育部重点实验室基金项目(KLE-TJGE-B1302); 中国矿业大学深部岩土力学与地下工程国家重点实验室基金项目(SKLGDUEK1205)
详细信息
    作者简介:

    张治国(1978- ),男,河北秦皇岛人,博士后,副教授,硕士生导师,主要从事城市地下工程施工对周围环境影响控制等方面的教学与研究工作。E-mail: zgzhang@usst.edu.cn。

Additional stresses of disturbed soils induced by shield tunneling based on fictitious force method

  • 摘要: 目前针对盾构隧道掘进引起周围地层附加应力的研究较少,且既有成果一般均假定施工场地为均质土体。基于层状地基基本解,结合虚拟力法,建立了考虑分层效应的盾构隧道施工扰动地层附加应力的分析方法,重点研究了盾构施工正面附加推力、盾构与土体间掘进摩擦力引起的地层附加应力。结合上海典型分层地基工程实例,分析了盾构施工引起的附加应力分布规律,且与均质土体工况下的计算结果进行了对比研究,考察了地基分层效应对扰动地层应力场的影响。计算结果表明:盾构与土体间掘进摩擦力与正面附加推力引起的土体附加应力分布规律较为相似,靠近开挖面时附加应力衰减较快且影响范围一般较小,而远离开挖面时应力衰减明显变慢,在实际工程中要重视掘进摩擦力和正面附加推力造成的施工风险;此外,考虑分层效应与常规不考虑分层效应时的附加应力场有较大差别,在设计中应重视地基非均质性带来的影响。成果可为合理制定层状地基中盾构隧道施工对临近管道以及建筑物的保护措施提供一定的理论依据。
    Abstract: The current researchers pay little attention to the additional stresses of disturbed soils caused by shield tunneling, and all the existing results are based on the assumption of homogenous soils. A theoretical approach, combined with the fictitious force method based on the basic solution for layered foundation, is proposed to analyze the additional stresses of disturbed soils induced by shield tunneling considering the layered effects. The additional stresses induced by the bulkhead additional pressure and the propulsion friction force between the shield machines and the surrounding soils are emphasized. A tunneling case in Shanghai for layered foundation is employed to analyze the distribution rules of the additional stresses caused by tunneling. Furthermore, the comparative researches with a case of homogenous soils are also conducted to study the effects of layered characteristics on disturbance stress field. The results show that the distribution rules of the additional stresses caused by the propulsion friction force are similar to those induced by the bulkhead additional pressure. The additional stresses attenuate quickly in the region close to excavation opening, and the influence sphere is generally small. The additional stresses attenuate slowly in the region away from excavation opening. The construction risk due to the friction force and bulkhead additional pressure should be highlighted. In addition, there are great differences in the characteristics of the stress fields with and without considering the layered effects. Therefore, the influence of non-homogenous soils should not be ignored in the design. It may provide a certain basis for correct preparation of protective measures of adjacent pipelines and buildings induced by shield tunneling in layered soils.
  • [1] PECK R B. Deep excavations and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 225-290.
    [2] SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320.
    [3] VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753-756.
    [4] LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(9): 846-856.
    [5] VERRUIJT A. A complex variable solution for a deforming circular tunnel in an elastic half plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2): 77-89.
    [6] VERRUIJT A. Deformations of an elastic half plane with a circular cavity[J]. International Journal of Solids Structures, 1998, 35(21): 2795-2804.
    [7] PARK K H. Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics, 2004, 4(4): 310-318.
    [8] PARK K H. Analytical solution for tunneling-induced ground movement in clays[J]. Tunnelling and Underground Space Technology, 2005, 20(3): 249-261.
    [9] YANG X L, WANG J M. Ground movement prediction for tunnels using simplified procedure[J]. Tunnelling and Underground Space Technology, 2011, 26(3): 462-471.
    [10] GUI M W, CHEN S L. Estimation of transverse ground surface settlement induced by DOT shield tunneling[J]. Tunnelling and Underground Space Technology, 2013, 33(1): 119-130.
    [11] 于 宁, 朱合华. 盾构隧道施工地表变形分析与三维有限元模拟[J]. 岩土力学, 2004, 25(8): 1330-1334. (YU Ning, ZHU He-hua. Analysis of earth deformation caused by shield tunnel construction and 3D-FEM simulation[J]. Rock and Soil Mechanics, 2004, 25(8): 1330-1334. (in Chinese))
    [12] 魏 纲. 盾构隧道施工引起的土体损失率取值及分布研究[J]. 岩土工程学报, 2010, 28(9): 1354-1361. (WEI Gang. Selection and distribution of ground loss ratio induced by shield tunnel construction[J]. Chinese Journal of Geotechnical Engineering, 2010, 28(9): 1354-1361. (in Chinese))
    [13] 张冬梅, 黄宏伟. 地铁盾构推进引起周围土体附加应力的分析[J]. 地下空间, 1999, 19(5): 379-382. (ZHANG Dong-mei, HUANG Hong-wei. Analysis of superimposed stress due to propulsion of underground with shield[J]. Underground Space, 1999, 19(5): 379-382. (in Chinese))
    [14] 胡 昕, 黄宏伟. 相邻平行顶管推进引起附加载荷的力学分析[J]. 岩土力学, 2001, 22(1): 75-77. (HU Xin, HUANG Hong-wei. Mechanical analysis of superimposed load introduced by propulsion of adjacent parallel pipe[J]. Rock and Soil Mechanics, 2001, 22(1): 75-77. (in Chinese))
    [15] 孙统立, 张庆贺, 韦良文, 等. 双圆盾构掘进施工扰动土体附加应力分析[J]. 岩土力学, 2008, 29(8): 2246-2251. (SUN Tong-li, ZHANG Qing-he, WEI Liang-wen, et al. Analysis of additional stresses of soil disturbance induced by propulsion of double-O-tube shield[J]. Rock and Soil Mechanics, 2008, 29(8): 2246-2251. (in Chinese))
    [16] 王 涛, 徐日庆, 齐静静, 等. 盾构掘进引起的土体附加应力场分析[J]. 浙江大学学报(工学版), 2008, 42(11): 2009-2014. (WANG Tao, XU Ri-qing, QI Jing-jing, et al. Additional stress field of surrounding soil due to shield tunneling[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(11): 2009-2014. (in Chinese))
    [17] AI Z Y, YUE Z Q, THAM L G, et al. Extended sneddon and muki solutions for multilayered elastic materials[J]. International Journal of Engineering Science, 2002, 40(13): 1453-1483.
    [18] LU J F, HANYGA A. Fundamental solution for a layered porous halfspace subject to a vertical point force or a point fluid source[J]. Computational Mechanics, 2005, 35(5): 376-391.
    [19] PAN E, BEVIS M, HAN F, et al. Surface deformation due to loading of a layered elastic half-space: a rapid numerical kernel based on a circular loading element[J]. Geophysical Journal International, 2007, 171(1): 11-24.
    [20] POULOS H G, DAVIS E H. Pile foundation analysis and design[M]. New York: Wiley, 1980: 93-100.
计量
  • 文章访问数:  391
  • HTML全文浏览量:  3
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-04
  • 发布日期:  2014-07-24

目录

    /

    返回文章
    返回