• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

群桩基础水平动力响应简化边界元频域解答

陈海兵, 梁发云

陈海兵, 梁发云. 群桩基础水平动力响应简化边界元频域解答[J]. 岩土工程学报, 2014, 36(6): 1057-1063. DOI: 10.11779/CJGE201406010
引用本文: 陈海兵, 梁发云. 群桩基础水平动力响应简化边界元频域解答[J]. 岩土工程学报, 2014, 36(6): 1057-1063. DOI: 10.11779/CJGE201406010
CHEN Hai-bing, LIANG Fa-yun. Simplified boundary element method for lateral vibration response of pile groups in frequency domain[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1057-1063. DOI: 10.11779/CJGE201406010
Citation: CHEN Hai-bing, LIANG Fa-yun. Simplified boundary element method for lateral vibration response of pile groups in frequency domain[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1057-1063. DOI: 10.11779/CJGE201406010

群桩基础水平动力响应简化边界元频域解答  English Version

基金项目: 国家自然科学基金项目(91315301-05); 国家重点基础研究发展计划(973计划)项目(2013CB036304)
详细信息
    作者简介:

    陈海兵(1984- ),男,博士研究生,主要从事桩基础及桥梁抗震等方面的研究工作。E-mail: chanhyben@gmail.com。

    通讯作者:

    梁发云

  • 中图分类号: TU473.1

Simplified boundary element method for lateral vibration response of pile groups in frequency domain

  • 摘要: 在水平振动或地震作用下,建立圆形桩与土的动力相互作用简化边界元模型,采用动力相互作用因子对群桩基础顶部的惯性响应和运动响应进行分析。桩身运动方程考虑了群桩动力相互作用以及由土体位移引起的被动桩效应,得到了频域内固定群桩基础顶部的水平动力响应的弹性解答。结果表明,简化边界元模型通过土体位移系数,考虑了沿桩身长度方向的土体相互作用,较为准确地得到了桩身运动弯矩,将其运用到群桩基础的计算中,可以用于评估动力作用下群桩基础的桩顶水平阻抗和桩土运动响应。
    Abstract: A simple boundary element approach for the system of circular piles and soils is formulated to predict the lateral impedance and kinematic seismic responses of fixed-head pile groups during the lateral vibration or seismic excitation. The dynamic interaction of piles in a group and the passive pile effect are considered in the dynamic equilibrium of a pile foundation. The elastic solution to the lateral impedance and kinematic seismic responses of the massless pile cap, restricting against rotation, is obtained in the frequency domain. The results show that the soil-displacement-influence coefficient can be used to consider the pile-soil interaction along a pile and to capture the kinematic bending moment accurately. Meanwhile, the coefficients provide reasonable estimations of the lateral impedance and kinematic seismic response of pile groups.
  • [1] MYLONAKIS G, NIKOLAOU A, GAZETAS G. Soil- pile-bridge seismic interaction: kinematic and inertial effects. Part I: Soft soil[J]. Earthquake Engineering & Structural Dynamics, 1997, 26(3): 337-359.
    [2] FINN W D L. A study of piles during earthquakes: Issues of design and analysis[J]. Bulletin of Earthquake Engineering, 2005, 3(2): 141-234.
    [3] UCAK A, TSOPELAS P. Effect of soil-structure interaction on seismic isolated bridges[J]. Journal of Structural Engineering, 2008, 134(7): 1154-1164.
    [4] GIANNAKOU A, GEROLYMOS N, GAZETAS G, et al. Seismic behavior of batter piles: Elastic response[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(9): 1187-1199.
    [5] DOBRY R, GAZETAS G. Simple method for dynamic stiffness and damping of floating pile groups[J]. Géotechnique, 1988. 38(4): 557-574.
    [6] GAZETAS G, FAN K, KAYNIA A. Dynamic response of pile groups with different configurations[J]. Soil Dynamics and Earthquake Engineering, 1993, 12(4): 239-257.
    [7] MAKRIS N, GAZETAS G. Dynamic pile-soil-pile interaction. Part II: Lateral and seismic response[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(2): 145-162.
    [8] MYLONAKIS G, GAZETAS G. Lateral vibration and internal forces of grouped piles in layered soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(1): 16-25.
    [9] KAYNIA A M, KAUSEL E. Dynamic stiffness and seismic response of pile groups[R]. Cambridge: Massachusetts Institute of Technology, 1982.
    [10] GAZETAS G, FAN K, KAYNIA A, et al. Dynamic interaction factors for floating pile groups [J]. Journal of Geotechnical Engineering, 1991, 117(10): 1531-1548.
    [11] 周香莲, 周光明, 王建华. 水平简谐荷载作用下饱和土中群桩的动力反应[J]. 岩石力学与工程学报, 2005, 24(8): 1433-1438. (ZHOU Xiang-lian, ZHOU Guang-ning, WANG Jian-hua. Dynamic response of pile group in saturated soil subjected to horizontal loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1433-438. (in Chinese))
    [12] CHAU K T, YANG X. Nonlinear interaction of soil-pile in horizontal vibration[J]. Journal of Engineering Mechanics, ASCE, 2005, 131(8): 847-858.
    [13] ELNAGGAR M H, NOVAK M. Nonlinear analysis for dynamic lateral pile response[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(4): 233-244.
    [14] ELNAGGAR M H, NOVAK M. Nonlinear lateral interaction in-pile dynamics[J]. Soil Dynamics and Earthquake Engineering, 1995, 14(2): 141-157.
    [15] NOGAMI T, OTANI J, KONAGAI K, et al. Nonlinear soil-pile interaction model for dynamic lateral motion[J]. Journal of Geotechnical Engineering, 1992, 118(1): 89-106.
    [16] 黄茂松, 吴志明, 任 青. 层状地基中群桩的水平振动特性[J]. 岩土工程学报, 2007, 29(1): 32-38. (HUANG Mao-song, WU Zhi-ming, REN Qing. Lateral vibration of pile groups in layered soil[J]. Chinese Jouranl of Geotechnical Engineering, 2007, 29(1): 32-38. (in Chinese))
    [17] 蒯行成, 沈蒲生. 层状介质中群桩水平动力阻抗的简化计算方法[J]. 振动工程学报, 1998, 11(3): 11-17. (KUAI Xing-cheng, SHEN Pu-sheng. Simplified method for calculating horizontal dyanmic impedances of pile groups in layered media[J]. Journal of Vibration Engineering, 1998, 11(3): 11-17. (in Chinese))
    [18] ELAHI H, MORADI M, POULOS H G, et al. Pseudostatic approach for seismic analysis of pile group[J]. Computers and Geotechnics, 2010, 37(1/2): 25-39.
    [19] TABESH A, POULOS H G. Pseudostatic approach for seismic analysis of single piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(9): 757-765.
    [20] LIANG F Y, CHEN H B, GUO W D. Simplified boundary element method for kinematic response of single piles in two-layer soil[J]. Journal of Applied Mathematics, 2013, Article ID 241482, doi: 10.1155/2013/241482
    [21] PENZIEN J. Soil-pile foundation interaction[M]. New York: Prentice-Hall, 1970: 349-381.
    [22] HASHASH Y M A, PHILLIPS C, GROHOLSKI D R. Recent advances in non-linear site response analysis[C]// Fifth International Conference in Recent Advances in Geotechnical Eartqhuake Engineering and Soil Dynamics, 2010.
    [23] POULOS H G, DAVIS E H. Pile foundation analysis and design [M]. New York: John Wiley and Sons, 1980.
    [24] SHAMPINE L F. Vectorized adaptive quadrature in MATLAB[J]. Journal of Computational and Applied Mathematics, 2008, 211(2): 131-140.
    [25] WU G, FINN W D L. Dynamic elastic analysis of pile foundations using finite element method in the frequency domain[J]. Canadian Geotechnical Journal, 1997, 34(1): 34-43.
    [26] FAN K, GAZETAS G, KAYNIA A, et al. Kinematic seismic response of single piles and pile groups[J]. Journal of Geotechnical Engineering, 1991, 117(12): 1860-1879.
    [27] KAVVADS M, GAZETAS G. Kinematic seismic response and bending of free-head piles in layered soil[J]. Géotechnique, 1993, 43(2): 207-222.
    [28] NIKOLAOU S, MYLONAKIS G, GAZETAS G, et al., Kinematic pile bending during earthquakes: analysis and field measurements[J]. Géotechnique, 2001, 51(5): 425-440.
    [29] GAZETAS G. Foundation vibrations[M]// FANG Hsai-yang, editor. Foundation Engineering Handbook. New York: Springer, 1991: 553-593.
  • 期刊类型引用(4)

    1. 唐小平,邓良平,汪建海,梁榆峰,江杰,叶耿昌. 排水管道土压力数值分析及非开挖修复内衬管壁厚优化. 给水排水. 2024(02): 139-145 . 百度学术
    2. 张常光,吴凯,孟祥忠,王晓轮. 稳态渗流下非饱和土涵洞竖向土压力的迭代解与简化. 哈尔滨工业大学学报. 2024(03): 68-77 . 百度学术
    3. 于金弘,伍鹤皋,石长征,孙海清,汪碧飞,李娇娜. 考虑管道自重荷载的埋地钢管结构计算方法. 长江科学院院报. 2024(05): 155-161 . 百度学术
    4. 朱珍锋,韩高孝. 沟埋式管道垂直土压力模拟试验研究. 水利与建筑工程学报. 2024(03): 99-106 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  361
  • HTML全文浏览量:  2
  • PDF下载量:  336
  • 被引次数: 5
出版历程
  • 收稿日期:  2013-07-28
  • 发布日期:  2014-06-19

目录

    /

    返回文章
    返回