• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地下水位波动下基坑周围地基土的孔压响应半解析解

应宏伟, 聂文峰, 黄大中

应宏伟, 聂文峰, 黄大中. 地下水位波动下基坑周围地基土的孔压响应半解析解[J]. 岩土工程学报, 2014, 36(6): 1012-1019. DOI: 10.11779/CJGE201406004
引用本文: 应宏伟, 聂文峰, 黄大中. 地下水位波动下基坑周围地基土的孔压响应半解析解[J]. 岩土工程学报, 2014, 36(6): 1012-1019. DOI: 10.11779/CJGE201406004
YING Hong-wei, NIE Wen-feng, HUANG Da-zhong. Semi-analytical solution of pore pressure response around excavations to groundwater level fluctuation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1012-1019. DOI: 10.11779/CJGE201406004
Citation: YING Hong-wei, NIE Wen-feng, HUANG Da-zhong. Semi-analytical solution of pore pressure response around excavations to groundwater level fluctuation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1012-1019. DOI: 10.11779/CJGE201406004

地下水位波动下基坑周围地基土的孔压响应半解析解  English Version

基金项目: 国家自然科学基金重点项目(51338009); 国家自然科学基金项目(51278462)
详细信息
    作者简介:

    应宏伟(1971- ),男,博士,副教授,主要从事岩土工程的教学与科研工作。E-mail: ice898@zju.edu.cn。

  • 中图分类号: TU473.2

Semi-analytical solution of pore pressure response around excavations to groundwater level fluctuation

  • 摘要: 水位波动条件下的基坑性状研究是随工程实践产生的新课题,而基坑周围的孔压响应机制是该课题的关键问题。将基坑渗流场分区,假设土体总应力不变,将固结方程解耦,利用Laplace、Fourier变换推导了浅层含水层内地下水位波动时板式支护基坑周围地基土孔压响应的二维近似半解析解。利用该解答,对综合系数θ(与土体固结系数、海床厚度、水位波动周期相关)、孔隙流体压缩系数与围护墙插入深度的影响进行分析。结果表明:孔压波动幅值沿基坑最短渗流路径不断衰减,滞后相位不断增大;θ越大,基坑周围地基土的相对孔压波动幅值越小,滞后相位越大,稳态渗流时的相对孔压为地下水位波动条件下不同θ值相对孔压波动幅值的极大值;孔隙流体压缩系数越大,基坑周围的波动孔压响应幅值越小,滞后相位越大;围护墙插入深度越大,主动侧相对超孔压波动幅值越大,被动侧波动幅值则越小。
    Abstract: The behavior of excavations subjected to water fluctuation is a new subject in engineering practices, with the pore pressure response around them being the focus. By dividing the seepage area around the excavations into several zones and assuming the total stress constant, the consolidation equation is decoupled, and then a semi-analytical solution of pore pressure response around a plate-supported excavation to water level fluctuation is deduced in conjunction with the Laplace and Fourier transformations. Based on the above solution, a parametric study is carried out to examine the effects of comprehensive coefficient θ (related to consolidation coefficient, seabed thickness and period) and compressibility of pore fluid on the pore pressure response. The results indicate that the amplitude of the relative pore pressure attenuates along the shortest seepage path, while the phase lag increases accordingly. The larger the θ, the smaller the amplitude of relative pore pressure and the larger the phase lag; furthermore, the maximum amplitude equals the value of the relative pore pressure in steady condition. In addition, the larger the compressibility of pore fluid, the smaller the amplitude of excess pore pressure and the larger the phase lag. The larger the embedded depth of retaining wall, the larger the amplitude of pore pressure in active side and the smaller the amplitude of pore pressure in passive side.
  • [1] 刘 涛, 陈允斌, 刘 浩. 滨海软土筑岛围堰深基坑工程实例分析[J]. 岩土工程学报, 2012, 34(增刊): 773-778. (LIU Tao, CHEN Yun-bin, LIU Hao. Case study of ultra-deep foundation pit by island and cofferdam construction in soft soils in coastal areas[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S0): 773-778.
    [2] 杨迎晓, 龚晓南, 张雪禅, 等. 钱塘江边海积粉土基坑性状研究[J]. 岩土工程学报, 2012, 34(增刊): 750-755. (YANG Ying-xiao, GONG Xiao-nan, ZHANG Xue-chan, et al. Behaviors of alluvial silt foundation pits along Qiantang River[J]. Chinese Journal of Geotechnical Engineering, 2002, 34(S0): 750-755. (in Chinese))
    [3] LI Y Q, YING H W, XIE K H, On the dissipation of negative excess porewater pressure induced by excavation in soft soil[J]. Journal of Zhejiang University Science, 2005, 6A(3): 188-193.
    [4] 刘早云, 李广信. 考虑渗透力的基坑水土压力计算[J]. 工业建筑, 2002, 32(9): 34-36. (LIU Zhao-yun, LI Guang-xin. Computation of water and earth pressure in consideration of seepage[J]. Industry Construction, 2002, 32(9): 34-36. (in Chinese))
    [5] FOX E N, MACNAMEE J. The two-dimensional potential problem of seepage into a cofferdam[J]. Philosophical Magazine Series 7, 1948, 39: 165-203.
    [6] HARR M E. Groundwater and seepage[M]. New York: McGraw-Hill, 1962.
    [7] BERESLAVSKII E N. The flow of ground waters around a Zhukovskii sheet pile[J]. Journal of Applied Mathematics and Mechanics, 2011, 75: 210-217.
    [8] KAVVADAS M, GIOLAS A, PAPACHARALAMBOUS G. Drainage of supported excavations[J]. Geotechnical and Geological Engineering, 1992, 10: 141-157.
    [9] 黄大中, 谢康和, 应宏伟. 渗透各向异性土层中基坑二维稳定渗流半解析解[J]. 浙江大学学报(工学版), 录用待刊. (HUANG Da-zhong, XIE Kang-he, YING Hong-wei. Semi-anlytical solution of two dimensional steady seepage around the foundation pit in soil layer with anisotropical permeability[J]. Journal of Zhejiang University, accepted (in Chinese))
    [10] BALIGH M, LEVADOUX J N. Consolidation theory for cyclic loading[J]. Journal of Geotechnical Engineering, 1978, 104: 415-431.
    [11] 栾茂田, 钱令希. 层状饱和土体一维固结分析[J]. 岩土力学, 1992, 13(4): 45-56. (LUAN Mao-tian, QIAN Ling-xi. One dimension consolidation analysis of layered saturated soils[J]. Soil and Mechanics, 1922, 13(4): 45-56. (in Chinese))
    [12] 谢康和. 双层地基一维固结理论与应用[J]. 岩土工程学报, 1994, 16(5): 24-35. (XIE Kang-he. Theory of one dimension consolidation of double-layered ground and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(5): 24-35. (in Chinese))
    [13] 吴世明, 陈龙珠, 杨 丹. 周期荷载作用下饱和粘土的一维固结[J]. 浙江大学学报, 1998, 22(5): 60-70. (WU Shi-ming, CHEN Long-zhu, YANG Dan. 1-D consolidation of saturated clay under cyclic loadings[J]. Journal of Zhejiang University, 1998, 22(5): 60-70. (in Chinese))
    [14] 蔡袁强, 徐长节, 丁狄刚. 循环荷载下成层饱水地基的一维固结[J]. 振动工程学报, 1998, 11(2): 184-193. (CAI Yuan-qiang, XU Chang-jie, DING Di-gang. One dimension consolidation of layered and saturated soils under cyclic loading[J]. Journal of Vibration Engineering, 1988, 11(2): 184-193. (in Chinese))
    [15] CONTE E, TRONCONE A. Soil layer response to pore pressure variations at the boundary[J]. Géotechnique, 2008, 58(1): 37-44.
    [16] HSU J R C, JENG D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal of Numerical and Analytical Methods in Geomechanics, 1994, 18: 785-807.
    [17] MYNETT A E, MEI C C. Wave-induced stresses in a saturated poroelastic seabed beneath a rectangular caisson[J]. Géotechnique, 1982, 32: 235-248.
    [18] SPIERENBURG S E J. Wave-induced pore pressures around submarine pipelines[J]. Coastal Engineering, 1986, 10: 33-48.
    [19] YUE Z Q, SELVADURAI A P S, LAW K T. Excess pore water pressure in a porelastic seabed saturated with a compressible fluid[J]. Canadian Geotechnical Journal, 1994, 31: 989-1003.
    [20] CHEN G J. Consolidation of multilayered half space with anisotropic permeability and compressible constituents[J]. International Journal of Solids and Structures, 2004, 41(16/17): 4567-4586.
    [21] SENJUNTICHAL T, RAJAPAKSE R K N D. Exact stiffness method for quasi-statics of a multi-layered poroelastic medium[J]. International Journal of Solids and Structures, 1995, 32(11): 1535-1553.
    [22] 徐 进, 蔡正银, 王旭东. 考虑孔隙流体可压缩性的土体平面应变固结半解析数值分析[J]. 岩土工程学报, 2012, 34(1): 89-93. (XU Jin, CAI Zheng-yin, WANG Xu-dong. Semi-analytical numerical analysis for plane strain consolidation of anisotropic soil with compressive constituents[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 89-93. (in Chinese))
  • 期刊类型引用(4)

    1. 唐小平,邓良平,汪建海,梁榆峰,江杰,叶耿昌. 排水管道土压力数值分析及非开挖修复内衬管壁厚优化. 给水排水. 2024(02): 139-145 . 百度学术
    2. 张常光,吴凯,孟祥忠,王晓轮. 稳态渗流下非饱和土涵洞竖向土压力的迭代解与简化. 哈尔滨工业大学学报. 2024(03): 68-77 . 百度学术
    3. 于金弘,伍鹤皋,石长征,孙海清,汪碧飞,李娇娜. 考虑管道自重荷载的埋地钢管结构计算方法. 长江科学院院报. 2024(05): 155-161 . 百度学术
    4. 朱珍锋,韩高孝. 沟埋式管道垂直土压力模拟试验研究. 水利与建筑工程学报. 2024(03): 99-106 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  367
  • HTML全文浏览量:  8
  • PDF下载量:  368
  • 被引次数: 5
出版历程
  • 收稿日期:  2013-07-04
  • 发布日期:  2014-06-19

目录

    /

    返回文章
    返回