• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土石坝漫顶溃坝过程离心模型试验与数值模拟

陈生水, 方绪顺, 钟启明, 李运辉

陈生水, 方绪顺, 钟启明, 李运辉. 土石坝漫顶溃坝过程离心模型试验与数值模拟[J]. 岩土工程学报, 2014, 36(5): 911-931. DOI: 10.11779/CJGE201405017
引用本文: 陈生水, 方绪顺, 钟启明, 李运辉. 土石坝漫顶溃坝过程离心模型试验与数值模拟[J]. 岩土工程学报, 2014, 36(5): 911-931. DOI: 10.11779/CJGE201405017
CHEN Sheng-shui, FANG Xu-shun, ZHONG Qi-ming, LI Yun-hui. Centrifugal model tests and numerical simulations for break of earth-rock dams due to overtopping[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 911-931. DOI: 10.11779/CJGE201405017
Citation: CHEN Sheng-shui, FANG Xu-shun, ZHONG Qi-ming, LI Yun-hui. Centrifugal model tests and numerical simulations for break of earth-rock dams due to overtopping[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 911-931. DOI: 10.11779/CJGE201405017

土石坝漫顶溃坝过程离心模型试验与数值模拟  English Version

基金项目: National Natural Science Foundation of China(91215301,51109141,51209141,51209140,51379129)
详细信息
    作者简介:

    陈生水: CHEN Sheng-shui(1962- ), Male, Ph.D., Professor. He has been engaged in the scientific researches on the relevant earth-rock dams and the relevant technical consultations. E-mail: sschen@nhri.cn.

  • 中图分类号: TU411.93;TV641

Centrifugal model tests and numerical simulations for break of earth-rock dams due to overtopping

  • 摘要: 利用溃坝离心模型试验系统,分别对3种不同坝高均质土石坝(最大坝高达32.0 m)及坝高为16.0 m的黏土心墙坝开展了漫顶溃坝试验研究,清楚地揭示了其溃决机理、溃口发展规律。结果发现,对于均质土石坝,随着坝高的增加,溃口的纵向下切与溃口边坡的失稳坍塌速度明显加快,溃口流量过程线更为陡峭,峰值流量增大,且峰值流量出现时间更早,溃坝历时更短;黏土心墙坝与均质坝溃决机理与溃口发展规律明显不同,随着漫坝水流对下游坝壳冲蚀程度的增加,黏土心墙发生剪断破坏,溃口洪水流量迅速增大。基于上述试验结果,分别提出了描述均质土石坝和黏土心墙坝溃坝过程和计算溃坝洪水流量过程的数学模型,并建议了相应的数值计算方法。数值模拟与试验结果的对比证明了建议溃坝数学模型的合理性。
    Abstract: By means of the centrifugal model test system for break of dams, experimental studies on the break of a homogenous earth-rock dam with three different heights (the largest one is up to 32.0 m) and a clay core dam of 16.0 m in height due to overtopping failure are performed. The break mechanism and the development rules of breaches are clearly released. It is found that for the homogeneous earth-rock dams, with the increase of dam height, the longitudinal down cutting of the breaches together with the collapse rate of breaking slopes obviously increases, and the hydrographs of break discharge become steeper. The peak discharge increases and emerges earlier, and the duration of dam break becomes shorter. For the clay core dams, the break mechanism and the breach development rules are obviously different from those of the homogenous dams. With the increasing erosion of downstream dam shells by overtopping flows, shear failure of the clay core occurs and the discharge through the breach abruptly increases. Based on the above test results, numerical models for depicting the break development of homogenous earth-rock dams and clay core dams and for calculating the hydrographs of their break discharges are proposed. The methods for the relevant numerical models are also put forward. The rationality of the proposed numerical model is validated through comparison between the numerical simulations and the observed results.
  • [1] Dam Safety Management Center of Ministry of Water Resources, P. R. China. Registration book of dam failures in China[R]. Nanjing: Dam Safety Management Center of Ministry of Water Resources, 2008. (in Chinese)
    [2] CHEN S S, XU G M, ZHONG Q M, et al. Development and application of centrifugal model test system for break of earth-rock dam[]. Journal of Hydraulic Engineering, 2012, 43(2): 241-245. (in Chinese)
    [3] MEYER-PETER E, MULLER R. Formulas for bed load transport[C]// Proceedings of Second Meeting International Association for Hydraulic Research, 1948: 39-64.
    [4] SMART G M. Sediment transport formula for steep channels[J]. Journal of Hydraulic Engineering, ASCE, 1984, 110(3): 267-276.
    [5] WANG Q S. Centrifugal model tests on break of earth-rock dams[R]. Beijing: China Institute of Water Resources and Hydropower Research, 2010. (in Chinese)
    [6] ZHANG J Y, LI Y, XUAN G X, et al. Overtopping breaching of cohesive homogeneous earth dam with different cohesive strength[J]. Science in China Series E: Technological Sciences, 2009, 52(10): 3024-3029.
    [7] LI Y, WANG X G, XUAN G X. Similarity criteria of homogeneous embankment failure due to overtopping flow[J]. Chinese Journal of Hydrodynamics (Series A), 2010, 25(2): 270-276. (in Chinese)
    [8] WANG X G, YAN Z M, ZHANG X N. Effect of bed discordance on helix flow at Y shaped junction[J]. Advance in Water Science, 2008, 19(6): 828-834. (in Chinese)
    [9] QIAN N, WAN Z H. Mechanics of sediment transport[M]. Beijing: Science Press, 2003. (in Chinese)
    [10] HAN Q W, HE M M. Incipient laws and velocity of sediment[M]. Beijing: Science Publication Press, 1999. (in Chinese)
    [11] CHEN S S, ZHONG Q M, CAO W. Breach mechanism and numerical simulation for seepage failure of earth-rock dams[J]. Science China Series E: Technological Sciences, 2012, 55(6): 1757-1764.
    [12] LI J X, ZHAO Z X. Hydraulics[M]. Nanjing: Hohai University Press, 2001. (in Chinese)
    [13] SINGH V P. Dam breach modelling technology[M]. Dordrecht: Kluwer Academic Publishers, 1996.
    [14] HARLAN D U. Johnstown flood national memorial: Historic structure report: the South Fork Dam: Historical data[R]. Denver: National Park Service, 1980.
计量
  • 文章访问数:  368
  • HTML全文浏览量:  4
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-10
  • 发布日期:  2014-05-20

目录

    /

    返回文章
    返回