• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

波浪荷载下海床稳定性的总应力法分析

余波, 丰土根, 熊中华

余波, 丰土根, 熊中华. 波浪荷载下海床稳定性的总应力法分析[J]. 岩土工程学报, 2014, 36(5): 905-909. DOI: 10.11779/CJGE201405014
引用本文: 余波, 丰土根, 熊中华. 波浪荷载下海床稳定性的总应力法分析[J]. 岩土工程学报, 2014, 36(5): 905-909. DOI: 10.11779/CJGE201405014
YU Bo, FENG Tu-gen, XIONG Zhong-hua. Total stress approach for stability of seabed under wave loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 905-909. DOI: 10.11779/CJGE201405014
Citation: YU Bo, FENG Tu-gen, XIONG Zhong-hua. Total stress approach for stability of seabed under wave loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 905-909. DOI: 10.11779/CJGE201405014

波浪荷载下海床稳定性的总应力法分析  English Version

基金项目: 国家自然科学基金项目(51009054); 教育部科学技术研究; 重点项目(109077); 江苏省自然科学基金项目(BE2010513)
详细信息
    作者简介:

    余波(1988- ),男,重庆人,硕士研究生。主要从事土动力学研究。E-mail: yuxb915@163.com。

    通讯作者:

    丰土根

  • 中图分类号: TU47

Total stress approach for stability of seabed under wave loads

  • 摘要: 评价海床稳定性是海工建筑物设计所考虑的重要部分。基于经典弹性理论,采用半逆解法,推导了线性波浪荷载下成层弹性海床的总应力解答,在此基础上根据莫尔库仑破坏准则进行了海床剪切破坏分析,分析表明:随海床深度线性增加的土体剪切模量对应力角分布具有明显影响,特别是当海床厚度小于半倍波长时,最容易发生破坏的位置位于海床表面以下一定深度,而对于均质海床,最容易发生破坏的位置位于海床表面。软弱夹层对海床的稳定性存在影响,埋深越浅的软弱夹层越容易导致其上部土层的剪切破坏。
    Abstract: The evaluation of seabed stability is an important part for the design of various marine facilities. Based on the classic theory of elasticity, the total stress solutions for layered elastic seabed under linear wave loads are derived by means of the semi-inverse method, and then according to the Mohr-Coulomb failure criterion, seabed shear failure is analyzed on the basis of the solutions. The results show that the shear modulus of soils which increases linearly along with the seabed depth has a significant effect on the distribution of stress angle, especially when the seabed thickness is less than a half times the wavelength. The easiest place to initiate shear failure is located at a certain depth below the seabed surface. However, for the homogeneous seabed, it is located at the surface of seabed . The stability of seabed is also affected by weak interlayer. The more shallow the depth of the weak interlayer, the more easily the shear failure of soil layer occurs on the weak interlayer.
  • [1] RAHMAN M S. Wave-induced instability of seabed: Mechanism and conditions[J]. Marine Geotechnology, 1991, 10(3/4): 277-299.
    [2] KOUKI Z, JENG D S, HSU J R C, et al. Wave-induced seabed instability: Difference between liquefaction and shear failure[J]. Soils and Foundations, 1998, 38(2): 37-47.
    [3] OKUSA S. Wave-induced stress in unsaturated submarine sediments[J]. Géotechnique, 1985, 35(4): 517-532.
    [4] TSAI C P. Wave-induced liquefaction potential in a porous seabed in front of a breakwater[J]. Ocean Engineering, 1995, 22(1): 1-18.
    [5] ZEN K, YAMAZAKI H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990, 30(4): 161-179.
    [6] JENG D S. Wave-induced seabed instability in front of a breakwater[J]. Ocean Engineering, 1997, 24(10): 887-917.
    [7] HENKEL D J. The role of waves in causing submarine landslides[J]. Géotechnique, 1970, 20(1): 75-80.
    [8] YAMAMOTO T, KONING H L, SELLMEJJER H. On the response of a poro-elastic bed to water waves[J]. Fluid Mechanics, 1978, 87(1): 193-206.
    [9] JENG D S. Porous models for wave-seabed interactions[M]. Shanghai: Shanghai Jiao Tong University Press, 2013.
    [10] 栾茂田, 张晨明, 王 栋, 等. 波浪作用下海床孔隙水压力发展过程与液化的数值分析[J]. 水利学报, 2004, 35(2): 94-101. (LUAN Mao-tian, ZHANG Chen-ming, WANG Dong, et al. Numerical analysis residual pore water pressure development and evaluation of liquefaction potential of seabed under ware loading[J]. Journal of Hydraulic Engineering, 2004, 35(2): 94-101. (in Chinese))
    [11] 刘红军, 王 虎, 张民生, 等. 波浪作用下黄河三角洲粉质土海床动力响应分析[J]. 岩土力学, 2013, 34(7): 2065-2071. (LIU Hong-jun, WANG Hu, ZHANG Min-sheng, ea al. Analysis of wave-induced dynamicl responsa of silty seabed in Yellow River delta[J]. Rock and Soil Mechanics, 2013, 34(7): 2065-2071. (in Chinese))
    [12] 张永利, 李 杰. 基于总应力法的波致海床剪切破坏准则[J]. 力学季刊, 2010, 31(3): 342-349. (ZHANG Yong-li, LI Jie. Wave-induced sealed shear failure criterion based on total stress approach[J]. Chinese Quarterly of Mechanics, 2010, 31(3): 342-349. (in Chinese))
    [13] 李广信. 岩土工程50讲[M]. 北京: 人民交通出版社, 2010. (LI Guang-xin. 50 Geotechnical lectures[M]. Beijing: China Communications Press, 2010. (in Chinese))
    [14] JENG D S, LEE T L. Dynamic response of porous seabed to ocean waves[J]. Computers and Geotechnics, 2001, 28(2): 99-128.
    [15] 郭秀军, 朱大伟, 孟庆生, 等. 波浪作用下黄河口多层粉质土海床动力响应特征差异性分析[J]. 岩土工程学报, 2012, 34(12): 2270-2276. (GU Xiu-jun, ZHU Da-wei, MENG Qing-sheng, et al. Differences in dynamic response characteristics of multi-lager silty seabed under waves in Yellow River Estuary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2270-2276. (in Chinese))
计量
  • 文章访问数:  356
  • HTML全文浏览量:  2
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-18
  • 发布日期:  2014-05-20

目录

    /

    返回文章
    返回