• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

一种考虑流体状态方程的土体CFD-DEM耦合数值方法

蒋明镜, 张望城

蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801. DOI: 10.11779/CJGE201405001
引用本文: 蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801. DOI: 10.11779/CJGE201405001
JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. DOI: 10.11779/CJGE201405001
Citation: JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. DOI: 10.11779/CJGE201405001

一种考虑流体状态方程的土体CFD-DEM耦合数值方法  English Version

基金项目: 国家杰出青年科学基金项目(51025932); 教育部博士点基金项目(20100072110048)
详细信息
    作者简介:

    蒋明镜(1965- ),男,教授,博士生导师,“同济大学特聘教授”,主要从事天然结构性黏土、砂土、非饱和土、太空土和深海能源土宏观微观试验、本构模型和数值分析研究。E-mail: mingjing.jiang@tongji.edu.cn。

  • 中图分类号: TU411

Coupled CFD-DEM method for soils incorporating equation of state for liquid

  • 摘要: 在离散元(DEM)商业软件PFC2D的基础上,通过将描述流体体变-压力非线性关系的Tait状态方程(EOS)引入计算流体动力学(CFD),建立模拟弱可压缩流体的CFD-DEM耦合计算模块。首先,推导CFD-DEM的控制方程:包括流体-颗粒相互作用力方程、流体运动方程、Tait状态方程和颗粒运动方程。接着,通过PFC2D自定义FISH语言和C++语言将离散化的CFD-DEM控制方程嵌入商业软件PFC2D中。最后,通过单颗粒水下自由沉降运动和一维单面排水固结试验的模拟验证该耦合模块的可行性。模拟结果表明单颗粒自由沉降速度和Stokes理论解接近,一维单面排水固结试验中孔压消散和固结度随着无因次时间因数Tv的变化均与太沙基固结理论符合较好。从而使得用离散元法全耦合分析土体不排水条件下的力学特性成为可能。
    Abstract: The Tait equation of state for liquid is implemented into the N-S equations-based computational fluid dynamics (CFD). This method is then coupled with the distinct element method (DEM) so as to establish CFD-DEM codes to simulate the porous media with weakly compressive fluid. Firstly, the governing equations for the coupled CFD-DEM method are introduced, including equations for fluid-particle interaction forces, N-S equations, Tait equation of state for liquid and motion equations for particle system. Then, a coupled CFD-DEM scheme is implemented into the DEM commercial software PFC2D. Finally, two benchmarking examples, namely, single particle free settling and one-dimensional consolidation, are used to validate the coupled CFD-DEM method. The results show that in the CFD-DEM simulations the free settling velocity of single particle meets the Stokes's solution, and the excess pore pressure and degree of consolidation at different values of Tv are close to those of the Terzaghi's consolidation theory.
  • [1] CUNDALL P A, STRACK O D L. The discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [2] ANDERSON J D. Computational fluid dynamics[M]. New York: McGraw-Hill, 1995.
    [3] TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87.
    [4] XU B, YU A. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics[J]. Chemical Engineering Science, 1997, 52(16): 2785-2809.
    [5] XU B, YU A, CHEW S, et al. Numerical simulation of the gas-solid flow in a bed with lateral gas blasting[J]. Powder Technology, 2000, 109(1): 13-26.
    [6] YU A B, XU B H. Particle-scale modelling of gas-solid flow in fluidisation[J]. Journal of Chemical Technology and Biotechnology, 2003, 78(2‐3): 111-121.
    [7] CHU K, YU A. Numerical simulation of complex particle-fluid flows[J]. Powder Technology, 2008, 179(3): 104-114.
    [8] EL SHAMY U, ZEGHAL M. Coupled continuum-discrete model for saturated granular soils[J]. Journal of Engineering Mechanics, 2005, 131(4): 413-426.
    [9] KAFUI K, THORNTON C, ADAMS M. Discrete particle-continuum fluid modelling of gas-solid fluidised beds[J]. Chemical Engineering Science, 2002, 57(13): 2395-2410.
    [10] ZHAO J, SHAN T. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics[J]. Powder Technology, 2013, 239: 248-258.
    [11] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94.
    [12] WEN C Y, YU Y H. Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series, 1966, 62(67): 100-111.
    [13] ANDERSON T B, JACKSON R. Fluid mechanical description of fluidized beds. Equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539.
    [14] TAIT P G. Report on some of the physical properties of fresh water and of sea-water[M]. Johnson Reprint Corp, 1965.
    [15] LI Y H. Equation of state of water and sea water[J]. Journal of Geophysical Research, 1967, 72(10): 2665-2678.
    [16] JIANG M, YU H-S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357.
    [17] ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1): 40-65.
    [18] Itasca Consulting Group Inc. Particle Flow Code in 2 Dimensions, version3.1[M]. USA: Minnesota, 2004.
    [19] MCCABE W L, SMITH J C, HARRIOTT P. Unit operations of chemical engineering[M]. New York: McGraw-Hill, 1956.
计量
  • 文章访问数:  722
  • HTML全文浏览量:  19
  • PDF下载量:  1520
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-22
  • 发布日期:  2014-05-20

目录

    /

    返回文章
    返回