• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

三针式TDR探头测试区域范围分析及试验验证

詹良通, 穆青翼, 陈云敏

詹良通, 穆青翼, 陈云敏. 三针式TDR探头测试区域范围分析及试验验证[J]. 岩土工程学报, 2014, 36(4): 757-762. DOI: 10.11779/CJGE201404022
引用本文: 詹良通, 穆青翼, 陈云敏. 三针式TDR探头测试区域范围分析及试验验证[J]. 岩土工程学报, 2014, 36(4): 757-762. DOI: 10.11779/CJGE201404022
ZHAN Liang-tong, MU Qing-yi, CHEN Yun-min. Analysis and experimental verification of sampling area of three-rod time-domain reflectometry probe[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 757-762. DOI: 10.11779/CJGE201404022
Citation: ZHAN Liang-tong, MU Qing-yi, CHEN Yun-min. Analysis and experimental verification of sampling area of three-rod time-domain reflectometry probe[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 757-762. DOI: 10.11779/CJGE201404022

三针式TDR探头测试区域范围分析及试验验证  English Version

基金项目: 国家863计划课题(2012AA062601)
详细信息
    作者简介:

    詹良通(1972- ),男,福建尤溪人,博士,教授,博士生导师,主要从事非饱和土力学、环境岩土工程及边坡工程等方面的教学与科研工作。E-mail: zhanlt@zju.edu.cn。

  • 中图分类号: TU41

Analysis and experimental verification of sampling area of three-rod time-domain reflectometry probe

  • 摘要: 在时域反射法(TDR)测试系统中,三针式探头作为应用最广泛的探头形式,其测试区域范围的确定是工程应用中一个重要问题。通过对比分析麦克斯韦方程及地下水渗流方程,利用岩土工程中常用的地下水渗流软件(如:Geostudio软件中SEEP/W模块)对一典型的三针式TDR探头测试区域范围进行计算,并设计了专门的试验对计算结果进行验证。结果显示:①地下水渗流分析软件对三针式TDR探头测试区域范围的计算结果与试验结果有较好的一致性;②三针式TDR探头的测试区域近似长半轴为33.0 mm、短半轴为20.7 mm的椭圆,且该区域内50%的电场能量集中在中间探针周围长半轴为10.7 mm、短半轴为8.7 mm的椭圆内,显示出较明显的“趋肤效应”;③介质的电导率对三针式TDR探头测试范围基本无影响。通过该研究,提出了三针式TDR探头测试范围的计算方法,为工程或试验中该种探头的设计提供了指导。
    Abstract: In the measurement system of time domain reflectometry (TDR), three-rod probe is most widely used. The sampling area of this probe form is an important question in engineering application. In this paper, through comparative analysis of Maxwell equations and groundwater seepage equation, the software for groundwater seepage (e.g., the SEEP/W module in the Geostudio) is used to compute the sampling area of a typical three-rod probe. A special experiment is designed to verify the computed results. The results show that: (1) the results of sampling area are well consistent between the numerical computation using Geostudio and the experiment; (2) the sampling area of the three-rod probe approximates an ellipse with semi-major and semi-minor axes of 33.0 and 20.7 mm respectively. In this area, the media with 50% influencing the measured results concentrate around the central rod, and this area also approximates an ellipse with semi-major and semi-minor axes of 10.7 mm and 8.7 mm respectively. It shows the “skin effect” significantly; (3) the electrical conductivity of the media has insignificant effect on the sampling area of the three-rod probe. A computational method for the sampling area of three-rod probe is poposed, and it provides guidance for the design of three-rod TDR probe in engineering and experiments.
  • [1] TOPP G C, DAVIS J L, ANNAN A P. Electromagnetic determination of soil water content:Measurements in coaxial transmission lines[J]. Water Resor Res, 1980, 16(3): 574: 582.
    [2] 陈仁朋, 许伟, 汤旅军, 等. 地下水位及电导率TDR测试探头研制与应用[J]. 岩土工程学报, 2009, 31(1): 77-82. (CHEN Ren-peng, XU Wei, TANG Lü-jun, et al. Development and application of TDR probes to monitor water level and electrical conductivity[J]. Chinese Jounal of Geotechnical Engineering, 2009, 31(1): 77-82. (in Chinese))
    [3] 梁志刚, 陈云敏, 陈赟. 利用同轴电缆电磁波反射技术测定非饱和土的含水率[J]. 岩土工程学报, 2006, 28(2): 191-195. (LIANG Zhi-gang, CHEN Yun-min, CHEN Yun. Measurement of water content of unsaturated soil by TDR technique[J]. Chinese Jounal of Geotechnical Engineering, 2006, 28(2): 191-195. (in Chinese))
    [4] ZHAN L T, MU Q Y, CHEN Y M, et al. Experimental study on applicability of using time-domain reflectometry to detect NAPLs contaminated sands[J]. Science China Technological Sciences. 2013, 56(6): 1534-1543.
    [5] ZEGELIN S J, WHITE I. Improved field probes for soil water content and electrical conductivity measurement using time domain reflectometry[J]. Water Resources Research, 1989, 25(11): 2367-2376.
    [6] BAKER J M, LASCANO R J. The spatial sensitivity of time-domain reflectometry[J]. Soil Science,1989,147(5): 378-384.
    [7] TOPP G C, DAVIS J L. Time-domain reflectometry (TDR) and its application to irrigation scheduling[J]. Advances In Irrigation, 1985, 3: 107-127.
    [8] KNIGHT J H. Sensitivity of time domain reflectometry measurements to lateral variations in soil water content[J]. Water Resources Research, 1992, 28(9): 2345-2352.
    [9] KNIGHT J H, FERRE P A, RUDOLPH D L, et al. A numerical analysis of the effects of coatings and gaps upon relative dielectric permittivity measurement with time domain reflectometry[J]. Water Resources Research, 1997, 33(6): 1445-1460.
    [10] NISSEN H H, FERRE T P A, MOLDRUP P. Sample area of two- and three-rod time domain reflectometry probes[J]. Water Resources Research, 2003, 39(10): 1289-1297.
    [11] FERRE T P A, NISSEN H H, KNIGHT J H, et al. Transverse sample area of two- and three-rod time domain reflectometry probes: Electrical conductivity[J]. Water Resources Research, 2003, 39(9): 1261-1270.
    [12] 陈伟. TDR探头设计及含水量和干密度的联合监测技术[D]. 浙江大学: 软弱土与环境土工教育部重点实验室, 2011: 35-40. (CHEN Wei. The design of TDR probe and monitoring technology of water content and dry density[D]. Zhejiang University: MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, 2011: 35-40. (in Chinese))
    [13] LIN C P, CHUNG C C, TANG S H. Development of TDR penetrometer through theoretical and laboratory investigation: measurement of soil electrical conductivity[J]. Geotechnical Testing Journal, 2006, 29(4): 314-321.
计量
  • 文章访问数:  366
  • HTML全文浏览量:  1
  • PDF下载量:  358
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 发布日期:  2014-04-21

目录

    /

    返回文章
    返回